Fructose catabolism European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University. The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our License. This is just an excerpt of a full-length report for this pathway. To access the complete report, please download it at the Reactome-Textbook. 07/05/2024 #### Introduction Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways. The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program). #### Literature references - Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. *BMC bioinformatics*, 18, 142. - Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. et al. (2017). Reactome enhanced pathway visualization. *Bioinformatics*, 33, 3461-3467. - Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P. et al. (2018). The Reactome Pathway Knowledgebase. *Nucleic Acids Res*, 46, D649-D655. - Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P. et al. (2018). Reactome graph data-base: Efficient access to complex pathway data. *PLoS computational biology, 14*, e1005968. Reactome database release: 88 This document contains 1 pathway and 5 reactions (see Table of Contents) https://reactome.org Page 2 ### Fructose catabolism 7 Stable identifier: R-RNO-70350 **Inferred from:** Fructose catabolism (Homo sapiens) This event has been computationally inferred from an event that has been demonstrated in another species. The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation. More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp ## KHK dimer phosphorylates Fru to Fru 1-P → **Location:** Fructose catabolism Stable identifier: R-RNO-70333 **Type:** transition **Compartments:** cytosol Inferred from: KHK dimer phosphorylates Fru to Fru 1-P (Homo sapiens) This event has been computationally inferred from an event that has been demonstrated in another species. The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation. More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp Followed by: ALDOB tetramer cleaves Fru-1-P to GA and DHAP #### ALDOB tetramer cleaves Fru-1-P to GA and DHAP 7 **Location:** Fructose catabolism Stable identifier: R-RNO-70342 Type: transition **Compartments:** cytosol Inferred from: ALDOB tetramer cleaves Fru-1-P to GA and DHAP (Homo sapiens) This event has been computationally inferred from an event that has been demonstrated in another species. The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation. More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp Preceded by: KHK dimer phosphorylates Fru to Fru 1-P **Followed by:** ALDH1A1 oxidises GA to DGA, DAK dimer phosphorylates D-glyceraldehyde to form D-glyceraldehyde 3-phosphate ## DAK dimer phosphorylates D-glyceraldehyde to form D-glyceraldehyde 3-phosphate 7 **Location:** Fructose catabolism Stable identifier: R-RNO-70349 Type: transition **Compartments:** cytosol Inferred from: DAK dimer phosphorylates D-glyceraldehyde to form D-glyceraldehyde 3-phosphate This event has been computationally inferred from an event that has been demonstrated in another species. The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation. More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp Preceded by: ALDOB tetramer cleaves Fru-1-P to GA and DHAP #### ALDH1A1 oxidises GA to DGA 7 **Location:** Fructose catabolism Stable identifier: R-RNO-6813749 **Type:** transition **Compartments:** cytosol **Inferred from:** ALDH1A1 oxidises GA to DGA (Homo sapiens) This event has been computationally inferred from an event that has been demonstrated in another species. The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation. More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp **Preceded by:** ALDOB tetramer cleaves Fru-1-P to GA and DHAP Followed by: GLYCTK phosphorylates DGA to 3PDGA ## **GLYCTK phosphorylates DGA to 3PDGA 对** **Location:** Fructose catabolism Stable identifier: R-RNO-6799495 **Type:** transition **Compartments:** cytosol **Inferred from:** GLYCTK phosphorylates DGA to 3PDGA (Homo sapiens) This event has been computationally inferred from an event that has been demonstrated in another species. The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation. $\underline{More\ details\ and\ cave ats\ of\ the\ event\ inference\ in\ Reactome.}\ For\ details\ on\ PANTHER\ see\ also: \\ \underline{http://www.pantherdb.org/about.jsp}$ Preceded by: ALDH1A1 oxidises GA to DGA https://reactome.org Page 8 ## **Table of Contents** | Introduction | 1 | |--|---| | Fructose catabolism | 2 | | > KHK dimer phosphorylates Fru to Fru 1-P | 3 | | → ALDOB tetramer cleaves Fru-1-P to GA and DHAP | 4 | | DAK dimer phosphorylates D-glyceraldehyde to form D-glyceraldehyde 3-phosphate | 5 | | → ALDH1A1 oxidises GA to DGA | 6 | | → GLYCTK phosphorylates DGA to 3PDGA | 7 | | Table of Contents | Q |