Dnmt3b:Dnmt31 methylates cytosine in

DNA

Beekman, R., Martín-Subero, JI., May, B.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0)

License. For more information see our license.

Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. BMC bioinformatics, 18, 142. л

Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. et al. (2017). Reactome enhanced pathway visualization. Bioinformatics, 33, 3461-3467. 才

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P. et al. (2018). The Reactome Pathway Knowledgebase. Nucleic Acids Res, 46, D649-D655. 7

Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P. et al. (2018). Reactome graph database: Efficient access to complex pathway data. PLoS computational biology, 14, e1005968. 7

Dnmt3b:Dnmt31 methylates cytosine in DNA \nearrow

Stable identifier: R-MMU-5336380
Type: transition
Compartments: nucleoplasm

Dnmt3b methylates the 5 position of cytosine in DNA. Dnmt3b catalyzes de novo methylation of cytosine residues (Okano et al. 1998, Hsieh 1999) in CG sequences (Hsieh 1999) and in non-CG sequences (Arand et al. 2012). Methylation of C residues in non-CG contexts is observed only in embryonic stem cells and appears to be catalyzed by Dnmt3b and Dnmt3a acting with Dnmt31 (Arand et al. 2012).

Literature references

Hsieh, CL. (1999). In vivo activity of murine de novo methyltransferases, Dnmt3a and Dnmt3b. Mol. Cell. Biol., 19, 8211-8.

Jenuwein, T., Wolf, V., Branco, MR., Xu, G., Walter, J., Leonhardt, H. et al. (2012). In vivo control of CpG and nonCpG DNA methylation by DNA methyltransferases. PLoS Genet., 8, e1002750. л

Xie, S., Okano, M., Li, E. (1998). Cloning and characterization of a family of novel mammalian DNA (cytosine-5) methyltransferases. Nat. Genet., 19, 219-20. л

Editions

