Rv1410c transports lprG:LM,LAM from

cytosol to the cell wall

Deffur, A., Jassal, B., Stephan, R., Wilkinson, RJ.

Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. BMC bioinformatics, 18, 142. л

Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. et al. (2017). Reactome enhanced pathway visualization. Bioinformatics, 33, 3461-3467. 才

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P. et al. (2018). The Reactome Pathway Knowledgebase. Nucleic Acids Res, 46, D649-D655. 7

Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P. et al. (2018). Reactome graph database: Efficient access to complex pathway data. PLoS computational biology, 14, e1005968. 7

Rv1410c transports lprG:LM,LAM from cytosol to the cell wall \nearrow

Stable identifier: R-HSA-9697077
Type: uncertain
Compartments: cytosol, peptidoglycan-based cell wall
Diseases: tuberculosis

Lipoarabinomannan carrier protein (LprG) acts as a carrier of both lipoarabinomannan (LAM) and lipomannan (LM) through the Mtb plasma membrane, most likely transported by probable triacylglyceride transporter (Rv1410c) (Shukla et al. 2014, Martinot et al. 2016).

Literature references

Iqbal, J., Layre, E., Seeliger, JC., Martinot, AJ., Moody, DB., Hussain, MM. et al. (2016). Mycobacterial Metabolic Syndrome: LprG and Rv1410 Regulate Triacylglyceride Levels, Growth Rate and Virulence in Mycobacterium tuberculosis. PLoS Pathog., 12, e1005351.

Harding, CV., Banaei, N., Boom, WH., Shi, L., McDonald, D., Athman, JJ. et al. (2014). Mycobacterium tuberculosis lipoprotein LprG binds lipoarabinomannan and determines its cell envelope localization to control phagolysosomal fusion. PLoS Pathog., 10, e1004471.

Editions

2019-02-06	Authored	Stephan, R.
$2019-10-23$	Reviewed	Wilkinson, RJ., Deffur, A.
$2020-08-05$	Edited	Jassal, B.

