

PI3-kinase binds to mutant PDGFR recept-

or

Ip, CKM., Rothfels, K.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of <u>Creative Commons Attribution 4.0 International (CC BY 4.0)</u> <u>License</u>. For more information see our <u>license</u>.

19/05/2024

Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

- Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. *BMC bioinformatics, 18*, 142. 7
- Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. et al. (2017). Reactome enhanced pathway visualization. *Bioinformatics*, 33, 3461-3467. A
- Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P. et al. (2018). The Reactome Pathway Knowledgebase. *Nucleic Acids Res, 46*, D649-D655. ↗
- Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P. et al. (2018). Reactome graph database: Efficient access to complex pathway data. *PLoS computational biology*, *14*, e1005968. *オ*

This document contains 1 reaction (see Table of Contents)

PI3-kinase binds to mutant PDGFR receptor 7

Stable identifier: R-HSA-9672172

Type: binding

Compartments: cytosol, plasma membrane

Diseases: cancer

Gain-of-function mutants of PDGFRA bind to phosphatidylinositol-3' kinase (PI3K) to activate AKT signaling, as assessed by the presence of phosphorylated AKT in Western blot analysis (Heinrich et al, 2003; Ohashi et al, 2004; reviewed in Corless et al, 2011). Interaction of PI3K with mutant PDGFRA receptors is assumed to occur through binding to phosphorylated Y731 and Y742 as is the case for the wild-type receptor, although this hasn't been directly demonstrated (reviewed in Roskoski, 2018).

Literature references

- Barnett, CM., Corless, CL., Heinrich, MC. (2011). Gastrointestinal stromal tumours: origin and molecular oncology. Nat. Rev. Cancer, 11, 865-78. 7
- Roskoski, R. (2018). The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. *Pharmacol. Res., 129*, 65-83.
- Kitamura, Y., Shinomura, Y., Isozaki, K., Nishida, T., Kinoshita, K., Ohashi, A. et al. (2004). Different inhibitory effect of imatinib on phosphorylation of mitogen-activated protein kinase and Akt and on proliferation in cells expressing different types of mutant platelet-derived growth factor receptor-alpha. *Int. J. Cancer, 111*, 317-21.
- Corless, CL., Heinrich, MC., Singer, S., Griffith, DJ., Town, A., Haley, A. et al. (2003). PDGFRA activating mutations in gastrointestinal stromal tumors. *Science*, 299, 708-10. 7

Editions

2020-02-06	Reviewed	Ip, CKM.
2020-02-25	Authored, Edited	Rothfels, K.