

CEBPA binds CDK4

May, B., Skokowa, J.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of <u>Creative Commons Attribution 4.0 International (CC BY 4.0)</u>
<u>License</u>. For more information see our <u>license</u>.

04/05/2024

https://reactome.org

Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

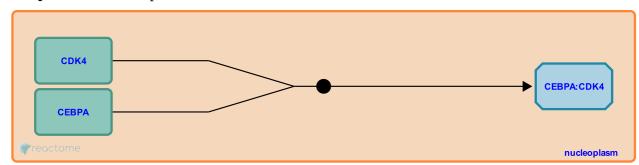
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

- Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. *BMC bioinformatics*, 18, 142.
- Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. et al. (2017). Reactome enhanced pathway visualization. *Bioinformatics*, 33, 3461-3467.
- Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P. et al. (2018). The Reactome Pathway Knowledgebase. *Nucleic Acids Res, 46*, D649-D655.
- Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P. et al. (2018). Reactome graph data-base: Efficient access to complex pathway data. *PLoS computational biology, 14*, e1005968.

Reactome database release: 88

This document contains 1 reaction (see Table of Contents)


https://reactome.org Page 2

CEBPA binds CDK4

Stable identifier: R-HSA-9624112

Type: binding

Compartments: nucleoplasm

CEBPA binds CDK4, inhibits the kinase activity of CDK4, and enhances the proteasomal degradation of CDK4 (Wang et al. 2001, Wang et al. 2002). These mechanisms may contribute to the inhibition of cell proliferation observed in response to CEBPA. CEBPA interacts with the T loop region of CDK4. In mouse liver cells, 5%-10% of Cdk4 is associated with Cebpa (Wang et al. 2001).

Literature references

Welm, A., Iakova, P., Roesler, WJ., Goode, T., Wilde, M., Timchenko, NA. et al. (2001). C/EBPalpha arrests cell proliferation through direct inhibition of Cdk2 and Cdk4. *Mol. Cell*, 8, 817-28.

Goode, T., Wang, H., Timchenko, NA., Albrecht, JH., Iakova, P. (2002). C/EBPalpha triggers proteasome-dependent degradation of cdk4 during growth arrest. *EMBO J.*, 21, 930-41.

Editions

2018-10-08	Authored, Edited	May, B.
2019-03-10	Reviewed	Skokowa, J.