

Phosphorylation of STAT2

Abdul-Sater, AA., Garapati, PV., Schindler, C.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of <u>Creative Commons Attribution 4.0 International (CC BY 4.0)</u> <u>License</u>. For more information see our <u>license</u>.

22/05/2024

Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

- Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. *BMC bioinformatics, 18,* 142. 7
- Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. et al. (2017). Reactome enhanced pathway visualization. *Bioinformatics*, 33, 3461-3467. A
- Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P. et al. (2018). The Reactome Pathway Knowledgebase. *Nucleic Acids Res, 46*, D649-D655. ↗
- Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P. et al. (2018). Reactome graph database: Efficient access to complex pathway data. *PLoS computational biology*, *14*, e1005968. *オ*

This document contains 1 reaction (see Table of Contents)

Phosphorylation of STAT2 7

Stable identifier: R-HSA-909732

Type: transition

Compartments: cytosol, plasma membrane

STAT2 recruited to the IFNAR1 subunit then becomes tyrosine phosphorylated on residue 690 by TYK2 kinase. This phosphotyrosine provides a docking site for recruitment of STAT1 to IFNAR1, which is then tyrosine phosphorylated and activated.

Literature references

- Geiger, TR., Martin, JM. (2006). The Epstein-Barr virus-encoded LMP-1 oncoprotein negatively affects Tyk2 phosphorylation and interferon signaling in human B cells. *J Virol*, *80*, 11638-50. ↗
- Fish, EN., Leaman, DW., Rani, MR., Ransohoff, RM., Croze, E., Wolfman, A. et al. (1999). Catalytically active TYK2 is essential for interferon-beta-mediated phosphorylation of STAT3 and interferon-alpha receptor-1 (IFNAR-1) but not for activation of phosphoinositol 3-kinase. *J Biol Chem, 274*, 32507-11. 7
- Horvath, CM., Stark, GR., Darnell JE, Jr., Kerr, IM., Improta, T., Schindler, C. (1994). Transcription factor ISGF-3 formation requires phosphorylated Stat91 protein, but Stat113 protein is phosphorylated independently of Stat91 protein. *Proc Natl Acad Sci U S A*, *91*, 4776-80.

Editions

2010-07-07	Authored, Edited	Garapati, P V.
2010-08-17	Reviewed	Schindler, C., Abdul-Sater, AA.