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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway 
annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-
referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions 
are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics research-
ers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioin-
formaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by 
systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 
HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and 
the European Molecular Biology Laboratory (EBI Industry program).
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NGF-stimulated transcription ↗

Stable identifier: R-HSA-9031628

NGF stimulation induces expression of a wide array of transcriptional targets. In rat PC12 cells, a com-
mon model for NGF signaling, stimulation with NGF causes cells to exit the cell cycle and undergo a dif-
ferentiation program leading to neurite outgrowth. This program is driven by the expression of immedi-
ate early genes (IEGs), which frequently encode transcription factors regulating the activity of NGF-spe-
cific delayed response genes (reviewed in Sheng and Greenberg, 1990; Flavell and Grennberg, 2008; San-
tiago and Bashaw, 2014).
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p-S133 CREB1, MEF2D and SRF  bind the ARC gene ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9031610

Type: binding

Compartments: nucleoplasm

Inferred from: Creb, Srf, and Mef2d bind the ARC gene (Mus musculus)

Activity-responsive transcription of the ARC gene is driven in part by a Synaptic Activity Response Ele-
ment located ~7kb upstream of the transcription start site. This element is bound by CREB, SRF and 
MEF2D as assessed by EMSA and ChIP in mouse cells (Kawashima et al, 2009). SARE-driven ARC expres-
sion is responsive to stimulation through AMPAR and  NMDAR activity, and depends on CaMK and MAPK 
signaling pathways, consistent with previous studies (Kawashima et al, 2009; Falvell et al, 2006; Ramanan 
et al, 2005; Bourtchuladze et al, 1994; reviewed in Inoue et al, 2010; Finkbeiner et al, 1997; Epstein and 
Finkbeiner, 2018). Additional binding sites for SRF, MEF2D and ELK1 were also identified in another 
study, along with putative binding sites for an as-yet uncharacterized Zeste-like mammalian homologue 
(Pintchovski et al, 2006).

Followed by: ARC gene expression
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AP-1 binds ARC gene ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9031575

Type: binding

Compartments: nucleoplasm

Inferred from: Ap-1 dimers bind Arc gene (Rattus norvegicus)

Based on studies done in rat PC12 cells, AP-1 binding sites were identified upstream of the ARC gene. Re-
cruitment of AP-1 family members FOS, FOSB, FRA1, JUNb and JUND to the ARC gene was stimulated 
after treatment of cells with NGF as assessed by ChIP (Adams et al, 2011; Mullenbrock et al, 2017).

Followed by: ARC gene expression
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EGR binds ARC gene ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9031616

Type: binding

Compartments: nucleoplasm

Inferred from: Egr1, Egr3 bind the Arc promoter (Mus musculus), Egr1, Egr2 bind the Arc gene (Rattus 
norvegicus)

EGR1, 2 and 3 have been shown to bind to cognate response elements in the ARC promoter and upregu-
late gene expression (Li et al, 2005; Mullenbrock et al, 2011, Adams et al, 2017). EGR1 and 2 protein and 
transcript levels are upregulated in response to sustained NGF signaling, while EGR3 transcript but not 
protein levels increase with NGF treatment (Adams et al, 2017). EGR3-dependent ARC expression may 
contribute to the delayed, protein-synthesis dependent increase in ARC protein levels (Li et al, 2005).

Followed by: ARC gene expression

Literature references
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ARC gene expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9031624

Type: omitted

Compartments: cytosol, nucleoplasm

The neuronal activity regulated cytoskeletal gene (ARC) is an immediate early gene that has roles in 
memory consolidation and synaptic plasticity, including long-term potentiation and depression (Plath et 
al, 2006; Mesaoudi et al, 2007; reviewed in Epstein and Finkbeiner, 2018). ARC was identified as a gene in-
duced by seizures in the hippocampus, and is activated downstream of signaling pathways such as mus-
carinic acetylcholine receptors (mAChR), NTRK and NMDA receptors in response to synaptic activity 
(Link et al, 1995; Lyford et al, 1995; Steward et al, 2001; Teber et al, 2004; Pintchovski et al, 2009). These 
receptors initiate signaling through intracellular calcium, cAMP, PKA and MAPK signaling pathways and 
converge on transcription factors such as CREB, SRF and MEF2, among others, to activate ARC gene ex-
pression (reviewed in Epstein and Finkbeiner, 2018).

During synaptic activity, ARC mRNA is rapidly transported to active synapses after transcription and is 
locally translated (Steward et al, 1998; Giorgi et al, 2007). ARC contributes to synaptic strength by promot-
ing AMPA receptor internalization (Chowdhury et al, 2006).

Preceded by: p-S133 CREB1, MEF2D and SRF  bind the ARC gene, EGR binds ARC gene, AP-1 binds ARC 
gene

Followed by: ARC binds DNM2 and SH3GL3
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ARC binds DNM2 and SH3GL3 ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9619838

Type: binding

Compartments: cytosol

Inferred from: Arc binds Sh3gl3 and Dnm2 (Rattus norvegicus)

ARC mRNA is rapidly transported to active synapses during synaptic activity where it is locally translated 
(Steward et al, 1998). At the synapse, ARC protein oligomerizes into virion-like capsids and interacts dir-
ectly with dynamin2 (DYN2) and endophilin (SH3GL3) to promote the internalization of AMPA receptors 
(Myrum et al, 2015; Chowdhury et al, 2006; Rial Verde et al, 2006). Because AMPA receptors are also 
known to transcriptionally inhibit ARC gene expression through a Gi-specific G protein mechanism, this 
establishes a negative feedback loop between ARC gene expression and cell surface localization of AMPA 
receptors. The details of this relationship remain to be elucidated (Rao et al, 2006; Mokin et al, 2003; re-
viewed in Epstein and Finkbeiner, 2018).

Preceded by: ARC gene expression
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p-4S, T366 ELK1:SRF bind EGR1 and EGR2 gene promoters ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9612076

Type: binding

Compartments: nucleoplasm

Expression of Early Growth Response (EGR) genes is dependent in part on the presence of upstream ser-
um response elements (SREs) that bind SRF (serum response factor) and its co-activator ELK1 in re-
sponse to mutiptle stimuli (Quereshi et al, 1991; Alexandre et al, 1991; de Franco et al, 1993; McMahon 
and Monroe, 1995;Chen et al, 2004; Vickers et al, 2004; Adams et al, 2017; Esnault et al, 2017; reviewed in 
O'Donovan et al, 1999; Pérez-Cadahía et al, 2011; Pagel and Deindl, 2011).
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NGF- and MAPK-dependent EGR1, EGR2 and EGR4 expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9612073

Type: omitted

Compartments: nucleoplasm

The Early Growth Response (EGR) gene family includes EGR1-4 and WT1. These Cys2-His2 zinc finger 
transcription factors are immediate early genes (IEG) that are rapidly turned on downstream of a num-
ber of stimuli and regulate expression of genes involved in stress response and differentiation (reviewed 
in Pagel and Deindl, 2001; Bahrami and Drabløs, 2016).  Roles for EGR proteins are well established in the 
nervous system, with EGR target genes contributing to synaptic plasticity, long-term potentiation, peri-
pheral nerve myelination and NGF-induced neurite outgrowth (reviewed in Perez-Cadahia et al, 2011; 
Herdegen and Leah, 1998; O'Donovan et al, 1999).

Expression of EGR genes depends on binding of phosphorylated ternary complex factor (TCF) protein 
ELK1 and its transcriptional coactivator SRF (serum response factor) to their cognate DNA binding se-
quences in the promoters (Hooker et al, 2017; De Franco et al, 1993; Harada et al, 2001; reviewed in Her-
degen and Leah, 1998). NGF-stimulated expression of EGR1 and 2 occurs downstream of sustained MAPK 
signaling (Millbrandt et al, 1987; Sukhatme et al, 1988; de Franco et al, 1998; Mullenbrock et al, 2011; 
Crosby et al, 1991; Lönn et al, 2005).  In addition to SRF and TCF binding sites, the EGR1 promoter also 
contain consensus binding sequences for AP-1 and CREB, as well as binding sites for EGR1 protein itself 
(Schwachtgen et al, 2000; Thiel et al, 2000; Svaren et al, 1996; reviewed in Page; and Deindl, 2001). Expres-
sion of EGR1 is limited by a negative feedback loop mediated by the binding of a complex of EGR1 with a 
repressor protein of the NAB family (NGF1A binding protein) to the EGR1 binding site (Cao et al, 1990; 
Thiel et al, 2000; Svaren et al, 1996).
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SGK phosphorylates CREB1 ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9612501

Type: transition

Compartments: nucleoplasm

Serum/glucocorticoid-induced kinase (SGK) phosphorylates CREB1 at S133 downstream of mutiple cellu-
lar stimuli (Lee et al, 1995; David et al, 2005).  SGK activity contributes to EGR1 gene expression by pro-
moting the phosphorylation of CREB1 and SRF transcription factor, both of which have binding sites in 
the EGR1 promoter (Tyan et al, 2008; Sakomoto et al, 1991; Schwachtgen et al, 2000).

Followed by: p-S133 CREB and p-S103 SRF bind the EGR1 promoter, Dimerization of p-S133-CREB1

Literature references

Lee, HJ., Mignacca, RC., Sakamoto, KM. (1995). Transcriptional activation of egr-1 by granulocyte-macrophage 
colony-stimulating factor but not interleukin 3 requires phosphorylation of cAMP response element-binding pro-
tein (CREB) on serine 133. J. Biol. Chem., 270, 15979-83. ↗

David, S., Kalb, RG. (2005). Serum/glucocorticoid-inducible kinase can phosphorylate the cyclic AMP response ele-
ment binding protein, CREB. FEBS Lett., 579, 1534-8. ↗

Tyan, SW., Tsai, MC., Lin, CL., Ma, YL., Lee, EH. (2008). Serum- and glucocorticoid-inducible kinase 1 enhances 
zif268 expression through the mediation of SRF and CREB1 associated with spatial memory formation. J. Neuro-
chem., 105, 820-32. ↗

Sakamoto, KM., Bardeleben, C., Yates, KE., Raines, MA., Golde, DW., Gasson, JC. (1991). 5' upstream sequence and 
genomic structure of the human primary response gene, EGR-1/TIS8. Oncogene, 6, 867-71. ↗

Schwachtgen, JL., Campbell, CJ., Braddock, M. (2000). Full promoter sequence of human early growth response 
factor-1 (Egr-1): demonstration of a fifth functional serum response element. DNA Seq., 10, 429-32. ↗

Editions
2019-08-16 Authored Rothfels, K.

2020-01-17 Reviewed Aletta, J M.

2020-02-24 Edited Rothfels, K.

https://reactome.org
https://reactome.org/content/detail/R-HSA-9612501
http://www.ncbi.nlm.nih.gov/pubmed/7608156
http://www.ncbi.nlm.nih.gov/pubmed/15733869
http://www.ncbi.nlm.nih.gov/pubmed/18088355
http://www.ncbi.nlm.nih.gov/pubmed/2052361
http://www.ncbi.nlm.nih.gov/pubmed/10826704


https://reactome.org Page 14

Dimerization of p-S133-CREB1 ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-111916

Type: binding

Compartments: nucleoplasm

Inferred from: Dimerization of p-S133-Creb1 (Rattus norvegicus)

Based on studies in rat cells, activation of CREB1 by phosphorylation at serine residue S133 induces form-
ation of CREB1 homodimers which are able to bind DNA (Yamamoto et al. 1988). The DNA binding and 
dimerization domains reside in the C-terminal region of CREB1 (Yun et al. 1990).

Preceded by: SGK phosphorylates CREB1
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SGK phosphorylates SRF ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9612509

Type: transition

Compartments: nucleoplasm

Serum/glucticocorticoid kinase (SGK) phosphorylates SRF at serine residue 103 in response to multiple 
upstream stimuli (Tyan et al, 2008). Phosphorylation of SRF and CREB1 by SGK contributes to the SGK-de-
pendent expression of EGR1, an immediate early gene with roles in neuronal development, (David et al, 
2005; Tyan et al, 2008; reviewed in Pagel and Deindl, 2011).

Followed by: p-S133 CREB and p-S103 SRF bind the EGR1 promoter

Literature references
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zif268 expression through the mediation of SRF and CREB1 associated with spatial memory formation. J. Neuro-
chem., 105, 820-32. ↗

David, S., Kalb, RG. (2005). Serum/glucocorticoid-inducible kinase can phosphorylate the cyclic AMP response ele-
ment binding protein, CREB. FEBS Lett., 579, 1534-8. ↗
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p-S133 CREB and p-S103 SRF bind the EGR1 promoter ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9612514

Type: binding

Compartments: nucleoplasm

Expression of EGR1 depends in part on the binding of phosphorylated CREB and SRF factors to their cog-
nate sites in the promoter (Quereshi et al, 1991; Alexandre et al, 1991;  McMahon et al, 1995; Chen et al, 
2004; Vickers et al, 2004; Tyan et al, 2008; David et al, 2005; Esnault et al, 2017). Phosphorylation of CREB 
can be mediated by RSK proteins, MAPKAPK2 or by SGK (de Cesare et al, 1998; Bonni et al, 1995; David et 
al, 2005; Tyan et al, 2008). SGK-mediated phosphorylation of SRF has also been implicated in the activa-
tion of EGR1 gene expression (Tyan et al, 2008).

Preceded by: SGK phosphorylates CREB1, SGK phosphorylates SRF

Followed by: EGR1 gene expression

Literature references

Qureshi, SA., Cao, XM., Sukhatme, VP., Foster, DA. (1991). v-Src activates mitogen-responsive transcription factor 
Egr-1 via serum response elements. J. Biol. Chem., 266, 10802-6. ↗

Alexandre, C., Charnay, P., Verrier, B. (1991). Transactivation of Krox-20 and Krox-24 promoters by the HTLV-1 Tax 
protein through common regulatory elements. Oncogene, 6, 1851-7. ↗

McMahon, SB., Monroe, JG. (1995). A ternary complex factor-dependent mechanism mediates induction of egr-1 
through selective serum response elements following antigen receptor cross-linking in B lymphocytes. Mol. Cell. 
Biol., 15, 1086-93. ↗
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tein kinase-dependent phosphorylation of ELK-1. J. Cell. Biochem., 93, 1063-74. ↗
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cell death. Mol. Cell. Biol., 24, 10340-51. ↗
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EGR1 gene expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9612516

Type: omitted

Compartments: nucleoplasm

Early Growth Response 1 (EGR) is an immediate early gene that is rapidly expressed downstream of a 
number of stimuli. It encodes a Cys2-His2 zinc finger transcription factor that regulates expression of 
genes involved in stress response, differentiation and neuronal development  (reviewed in Pagel and 
Deindl, 2001; Bahrami and Drabløs, 2016; Perez-Cadahia et al, 2011; Herdegen and Leah, 1998; 
O'Donovan et al, 1999).

Expression of EGR1 depends on binding of phosphorylated TCF protein ELK1 and its transcriptional co-
activator SRF (serum response factor) to their cognate DNA binding sequences in the promoters (Hooker 
et al, 2017; De Franco et al, 1993; Harada et al, 2001; reviewed in Herdegen and Leah, 1998).  In addition 
to SRF and TCF binding sites, the EGR1 promoter also contain consensus binding sequences for AP-1 and 
CREB, as well as binding sites for EGR1 protein itself (Schwachtgen et al, 2000; Thiel et al, 2000; Svaren et 
al, 1996; David et al, 2005; Tyan et al, 2008;  reviewed in Page; and Deindl, 2001). Expression of EGR1 is 
limited by a negative feedback loop mediated by the binding of a complex of EGR1 protein with a 
repressor protein of the NAB family (NGF1A binding protein) to the EGR1 binding site (Cao et al, 1990; 
Thiel et al, 2000; Svaren et al, 1996).

Preceded by: p-S133 CREB and p-S103 SRF bind the EGR1 promoter

Followed by: EGR1, EGR2 bind the RRAD promoter

Literature references
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EGR1 binds to the EGR1 promoter ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9613207

Type: binding

Compartments: nucleoplasm

EGR1 protein binds to three sites in its own promoter, upregulating its own expression (Cao et al, 1990)

Literature references

Cao, XM., Koski, RA., Gashler, A., McKiernan, M., Morris, CF., Gaffney, R. et al. (1990). Identification and character-
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nals. Mol. Cell. Biol., 10, 1931-9. ↗
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EGR1 and NAB co-repressors bind EGR1 gene ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9613202

Type: binding

Compartments: nucleoplasm

EGR1 expression is repressed by the recruitment of NAB proteins (NGFI-A binding protein) 1 and 2 
through an interaction with EGR1 at its cognate promoter site, establishing a negative feedback loop 
(Russo et al, 1993; Russo et al, 1995; Svaren et al, 1996; Kumbrick et al, 2005; Kumbrick et al, 2010). NAB 
proteins interact with the EGR R1 domain through a conserved NCD1 domain (NAB conserved domain 1) 
and this interaction is abrogated by mutation of EGR residue I293 (Svaren et al, 1996; Russo, 1993). NCD1 
is also required for multimerization of the NAB proteins (Savern et al, 1996; Svaren et al, 1998). Two other 
conserved regions of NAB proteins (NCD2 and CID, for CHD4-interacting domain) are required for the re-
pression function of the proteins (Svaren et al, 1996; Srinivasan et al, 2006).  In some contexts, NAB pro-
teins have also been shown to activate EGR-mediated transcription, and EGR- and NAB-dependent tran-
scription is required for peripheral nervous system myelination  (Sevetson et al, 2000; Le et al, 2005).
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111, 207-17. ↗
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EGR1 binds CDK5R1 gene ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9616105

Type: binding

Compartments: nucleoplasm

Inferred from: Egr1 binds Cdk5r1 gene (Rattus norvegicus)

EGR1 binds to its cognate site in the promoter element of the CDK5R1 gene in response to sustained stim-
ulation with NGF. Expression of CDK5R1 (also known as p35) depends on activation of the ERK signaling 
pathway downstream of NGF stimulation, and is required to promote neurite outgrowth (Harada et al, 
2001). CDK5R1 is a neuron-specific activator of CDK5, and the CDK5:CDK5R1 complex is required for 
neuronal differentiation (Tsai et al, 1994; Lew et al, 1994; Nikolic et al, 1996; Xiong et al, 1997; Paglini et 
al, 1998).

Followed by: NAB2 binds EGR1 to repress CDK5R1 gene expression, EGR1-dependent CDK5R1 gene ex-
pression

Literature references
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EGR1-dependent CDK5R1 gene expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9616110

Type: omitted

Compartments: nucleoplasm, plasma membrane

CDK5R1 (also known as p35) is a neuron-specific regulator of CDK5 that activates CDK5 kinase. The com-
plex of CDK5:CDK5R1 is required for neurite outgrowth (Tsai et al, 1994; Lew et al, 1994; Nikolic et al, 
1996; Xiong et al, 1997; Paglini et al, 1998). CDK5R1 expression is regulated in part by the binding of EGR1 
to its cognate binding sites in the CDK5R1 promoter. EGR1 binding is stimulated by sustained NGF signal-
ing and depends on activation of the ERK signaling pathway (Harada et al, 2001).

Preceded by: EGR1 binds CDK5R1 gene

Followed by: MyrG-CDK5R1,2 bind CDK5

Literature references
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NAB2 binds EGR1 to repress CDK5R1 gene expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9616367

Type: binding

Compartments: nucleoplasm

Inferred from: NAB2 binds Egr1 at the Cdk5r1 promoter (Homo sapiens)

ERK- and EGR1-dependent expression of CDK5R1 is inhibited by the EGR1-interacting protein NAB2 
(Harada et al, 2001).

Preceded by: EGR1 binds CDK5R1 gene

Literature references
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MyrG-CDK5R1,2 bind CDK5 ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9616368

Type: binding

Compartments: plasma membrane, cytosol

Inferred from: MyrG-Cdk5r1(2-307) binds Cdk5 (Rattus norvegicus)

CDK5R1 is a neuron-specific regulatory subunit of CDK5 that activates CDK5 kinase activity in a cyclin-
type manner and  CDK5R1 and CDK5 co-precipitate from rat PC12 cells and from bovine brain (Tsai et al, 
1994; Lew et al, 1994; Harada et al, 2001).  CDK5 activity is required for neurite outgrowth and disruption 
of CDK5 or CDK5R1 leads to defects in neuronal migration in mice (Nikolic et al, 1996; Xiong et al, 1997; 
Paglini et al, 1998). A second CDK5 regulatory protein, CDK5R2 (also known as p39) is required for CDK5-
dependent neurite outgrowth in response to bFGF (Tang et al, 1995; Xiong et al, 1997).

Preceded by: EGR1-dependent CDK5R1 gene expression
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dependent kinase 5. Nature, 371, 419-23. ↗

Lew, J., Huang, QQ., Qi, Z., Winkfein, RJ., Aebersold, R., Hunt, T. et al. (1994). A brain-specific activator of cyclin-de-
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EGR1,2,3 bind the NAB2 promoter ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9612483

Type: binding

Compartments: nucleoplasm

NAB1 and 2 (NGFI-A binding protein) are transcriptional co-repressors that interact with EGR1, 2 and 3 
and repress transcription of EGR target genes (Swirnoff et al, 1998; Svaren et al, 1996; Russo et al, 1995; 
Sevetson et al, 2000; Abdulkadir et al, 2001). NAB proteins may contribute to transcriptional repression 
through the recruitment of CHD4 (Srinivasan et al, 2006). 

Expression of NAB2 is regulated in part by the binding of EGR proteins to the cognate site in the NAB2 
promoter (Kumbrink et al, 2005; Kumbrink et al, 2010).

Followed by: EGR-dependent NAB2 gene expression
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EGR-dependent NAB2 gene expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9612493

Type: omitted

Compartments: nucleoplasm

NAB1 and 2 (NGFI-A binding protein) are transcriptional co-factors that interact with EGR1, 2 and 3 and 
repress or activate transcription of EGR target genes in a context dependent fashion (Swirnoff et al, 1998; 
Svaren et al, 1996; Svaren et al, 1998; Russo et al, 1995; Sevetson et al, 2000; Abdulkadir et al, 2001; Le et 
al, 2005). NAB proteins may contribute to transcriptional repression through the recruitment of CHD4 
(Srinivasan et al, 2006). 

NAB2 is a delayed immediate early gene that is expressed in response to many of the same stimuli as EGR 
(Qu et al, 1998). Expression of NAB2 is regulated in part by the binding of EGR proteins to the cognate site 
in the NAB2 promoter (Kumbrink et al, 2005; Kumbrink et al, 2010). NAB2 expression is in frequently lost 
in prostate carcinomas and EGR1 is frequently overexpressed (Abdulkadir et al, 2001; Eid et al, 1998; 
Thigpen et al, 1996).

Preceded by: EGR1,2,3 bind the NAB2 promoter
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EGR1, EGR2 bind the RRAD promoter ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9613210

Type: transition

Compartments: nucleoplasm

EGR1 and EGR2 are required for the activation of RRAD gene expression (Mager et al, 2008; Svaren et al, 
2000). RRAD protein plays a role in serum-stimulated DNA synthesis in melanoma cells and contributes 
to electrical conductance in the heart (Zhu et al, 1999; Wang et al, 2010; Chang et al, 2007).

Preceded by: EGR1 gene expression

Followed by: NAB2 and CHD4 bind and repress EGR-mediated RRAD gene expression
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RRAD gene expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9613219

Type: omitted

Compartments: nucleoplasm, cytosol

RRAD (Ras associated with diabetes) is a small GTP-binding member of the RAS superfaily that was ori-
ginally as being overexpressed in skeletal muscle of people with type II diabetes (Reynet and Kahn, 1993; 
Zhu et al, 1995). RRAD has roles in cardiac regulation, and contributes to glucose metabolism and tumor 
metastasis through interaction with NME1 (nucleoside diphosphate kinase A) (Chang et al, 2007; Wang et 
al, 2010; Zhu et al, 1999; Tseng et al, 2001). In addition, RRAD contributes to Schwann cell development 
and myelination by modulating the RHO ROCK pathway (Ward et al, 2002; Yamauchi et al, 2004; Melen-
dez-Vasquez et al, 2004). RRAD gene expression is positively regulated upon binding of EGR1 or EGR2 to 
their cognate sites in the promoter, while  EGR-dependent recruitment of NAB proteins leads to EGR-me-
diated repression through the recruitment of chromatin remodellers and histone deacetylase complexes 
(Svaren et al, 2000; Mager et al, 2008). RRAD expression is repressed in Schwann cells during myelination 
and is upregulated in NAB knockout mice, implicating NAB proteins as negative regulators of RRAD ex-
pression (Verheijen et al, 2003; Mager et al, 2008; Desmazières et al, 2008). It is worth noting, however, 
that a number of genes required for Schwann cell differentiation and myelination are activated by 
EGR:NAB complexes at their promoters (Le et al, 2005).
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NAB2 and CHD4 bind and repress EGR-mediated RRAD gene expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9613213

Type: binding

Compartments: nucleoplasm

NAB2 is recruited to EGR2 to the RRAD promoter through interaction with the NCD1 (NAB conserved do-
main 1) (Svaren et al, 1996; Svaren et al, 1998).  NAB2 in turn recruits the CHD4 subunit of the NURD 
chromatin remodelling complex through its CID (CHD4-interacting domain) and in this manner, 
represses transcription from the RRAD promoter (Srinivasan et al, 2006; Mager et al, 2008). In addition to 
roles in cellular proliferation and cardiac function, RRAD protein is known to contribute to RHO signal-
ing, which promotes Schwann cell migration and myelination (Zhu et al, 1999; Wang et al, 2010; Chang et 
al, 2007, Ward et al, 2002; Yamauchi et al, 2004; Melendez-Vasquez et al, 2004).

Preceded by: EGR1, EGR2 bind the RRAD promoter
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EGR2:NAB2 and CHD4 bind the ID2 and ID4 promoter regions ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9613476

Type: binding

Compartments: nucleoplasm

EGR2 is required for peripheral nerve cell myelination in Schwann cells where it activates some target 
genes and represses others (Topilko et al, 1999; Zorick et al, 1996; Le et al, 2005; Le Blanc et al, 2005). ID2 
and ID4 were identified as targets of EGR2-mediated repression during peripheral nerve myelination 
(Mager et al, 2008). EGR2 represses ID2 and ID4 gene expression by recruiting NAB2 and the NURD chro-
matin remodelling complex (Mager et al, 2008, Srinivasan et al, 2006).

Followed by: Expression of ID2 and ID4 is repressed by EGR2:NAB
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Expression of ID2 and ID4 is repressed by EGR2:NAB ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9612534

Type: omitted

Compartments: nucleoplasm

ID1-4 (Inhibitor of DNA-binding) are members of the helix-loop-helix family of proteins that lack the ba-
sic amino acids responsible for DNA binding in basic HLH proteins. HLH domain-mediated heterodimer-
ization of an ID protein with a basic HLH protein therefore acts as a natural dominant negative inhibitor 
of bHLH function by preventing DNA binding (Massari and Murre, 2000). ID proteins primarily interact 
with members of the E family of proteins, including E12, E47, HEB and E2-2, but also interact with other 
bHLH proteins. ID proteins promote cell cycle progression and cell migration, and restrict cellular sen-
escence and the differentiation of a number of progenitor cell types, including oligodendrocytes (r-
eviewed in Perk et al, 2005; Ling et al, 2014).

Expression of ID2 and ID4 is negatively regulated by an EGR2:NAB2 complex that is recruited to the EGR 
binding sites in the promoter. Repression of ID2 and ID4 during development is associated with in-
creased promoter occupancy of the EGR2:NAB2 complex and may be effected through the recruitment of 
the NURD chromatin remodelling complex and histone deacetylases. NAB2 has been shown to interact 
with the CHD4 and CHD3 subunits of the NURD complex through its conserved CHD4-interacting do-
main (CID)  (Mager et al, 2008; Srinivasan et al, 2006; Hung et al, 2012).

Preceded by: EGR2:NAB2 and CHD4 bind the ID2 and ID4 promoter regions
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p-S133 CREB1, LYL1 and EP300 bind the ID1 and ID3 genes ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9613451

Type: binding

Compartments: nucleoplasm

CREB1, EP300 and LYL1 are required for the activation of the ID1 and ID3 genes, which contribute to cel-
lular proliferation and differentiation (Impey et al, 2004; San Marina et al, 2008; Rivera and Murre, 2001; 
Hong et al, 2011; Zhao et al, 2016). CREB1 binds to the CRE elements in the ID gene promoters and re-
cruits EP300 in a CREB1 S133 phosphorylation dependent manner.  S133 phosphorylation is dispensable 
for recruitment of LYL1, which instead depends on an interaction between the LYL1 N-terminal domain 
and the Q2 and KID domains of CREB1 (San Marina et al, 2008).

Followed by: ID1 and ID3 gene expression
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ID1 and ID3 gene expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9613460

Type: omitted

Compartments: nucleoplasm

ID1-4 (Inhibitor of DNA-binding) are members of the helix-loop-helix family of proteins that lack the ba-
sic amino acids responsible for DNA binding in basic HLH proteins. HLH domain-mediated heterodimer-
ization of an ID protein with a basic HLH protein therefore acts as a natural dominant negative inhibitor 
of bHLH function by preventing DNA binding (Massari and Murre, 2000). ID proteins primarily interact 
with members of the E family of proteins, including E12, E47, HEB and E2-2, but also interact with other 
bHLH proteins. ID proteins promote cell cycle progression and cell migration, and restrict cellular sen-
escence and the differentiation of a number of progenitor cell types, including oligodendrocytes (r-
eviewed in Perk et al, 2005; Ling et al, 2014). ID1 and ID3 proteins also have established roles in hema-
topoiesis (Nogueira et al, 2000; Rivera and Murre, 2001; Hong et al, 2011; Zhao et al, 2016).

ID1 and ID3 gene expression is activated by the binding of CREB1 to CRE sites in the promoter. CREB re-
cruits transcriptional co-activators p300 and CBP in a CREB S133 phosphorylation-dependent manner (r-
eviewed in Shaywitz and Greenberg, 1999). ID1 and ID3 gene activation also depends on the CREB1-de-
pendent recruitment of LYL1, a basic helix-loop-helix transcription factor with roles in cell proliferation 
and differentiation. The N-terminal domain of LYL1 interacts with the Q2 and KID domains of CREB1 in a 
manner that does not require CREB1 S133 phosphorylation (San Marina et al, 2008).

Preceded by: p-S133 CREB1, LYL1 and EP300 bind the ID1 and ID3 genes
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REST binds the VGF promoter ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9621054

Type: binding

Compartments: nucleoplasm

RE1-silencing transcription factor (REST, also known as Neuron-restrictive silencer factor  or NRSF) is a 
transcriptional repressor that binds to neuron-restrictive silencer elements (NRSEs) to inhibit transcrip-
tion in non-neuronal cells and to temporally regulate expression in neuronal cells. REST interacts with 2 
corepressor complexes, mSIN3 and CoREST, which recruit histone deacetylases to promoter regions 
(Schoenherr et al, 1995; Lunyak et al, 2002; Mulligan et al, 2008).

Promoter analysis of the VGF gene identified a functional NRSE element spanning the transcriptional 
start site, and this element is bound by NRSF as assessed by ChIP. Mutations in the NRSE relieve tran-
scriptional repression and overexpression of NRSF in rat PC12 cells suppresses VGF transcription (Moon 
et al, 2015).
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EGR1 binds the VGF gene ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9620663

Type: binding

Compartments: nucleoplasm

In neuronal cells, the VGF gene is induced by sustained NGF signaling, as well as by cyclic AMP and oth-
er agents, although to a lower degree (Salton et al, 1991a; Salton et al, 1991b; Mullenbrock et al, 2011). 
Promoter analysis of the VGF gene identified a proximal promoter element spanning nucleotides -180 to -
70 with a number of consensus binding sequences for transcriptional regulators (Canu et al, 1997; Pos-
senti et al, 1992; Di Rocco et al, 1997; D'Arcangelo et al, 1996). This promoter is under negative regulation 
in non-neuronal cells.  Among the promoter elements identified is a G(S)G motif between the TATA box 
and the transcriptional start site that is bound by EGR1 in an NGF-inducible mannner (D'Arcangelo et al, 
1996; Mullenbrock et al, 2011; Adams et al, 2017).

Followed by: VGF gene expression
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p-CREB, ASCL1, TCF12, ATFs and p300 bind the VGF promoter ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9620717

Type: binding

Compartments: nucleoplasm

Inferred from: p-Creb, Ascl1, Tcf12, p300 bind the vgf promoter (Rattus norvegicus)

Studies of the VGF promoter have identified a number of consensus sites in a minimal 110 bp promoter 
spanning -180 to -70 upstream of the transcriptional start site (D'Arcangelo et al, 1996; Possenti et al, 
1992; Mandolesi et al, 2002). These sites, which include an E-box, a CCAAT site, a CRE element and a 
G(S)G  site, are required for NGF-responsive transcription in neuronal cells (Possenti et al, 1992; D'Arc-
angelo et al, 1996; Mandolesi et al, 2002). The E box and CCAAT elements are bound by TCF12 (also 
known as HEB) and ASCL1 (also known as MASH1) to weakly stimulate trancriptional activity (Di Rocco 
et al, 1997; Mandolesi et al, 2002). The CRE is bound by phosphorylated CREB and by members of the ATF 
family . CRE binding is facilitated through protein-protein interactions with an unidentified CCAAT-bind-
ing factor (Di Rocco et al, 1997; D'Arcangelo et al, 1996; Mandolesi et al, 2002). The CREB:ASCL1 complex 
also includes the histone acetyltransferase p300 (Mandolesi et al, 2002; Adams et al, 2017).

Followed by: VGF gene expression
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VGF gene expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9620723

Type: omitted

Compartments: endoplasmic reticulum lumen, nucleoplasm

VGF is a neurosecretory protein that is expressed in neuronal cells in response to NGF signaling as well 
as other stimuli including cAMP (Salton et al, 1991a; Salton et al, 1991b; Hawley et al, 1992; Nagasaki et al, 
1999; reviewed in Salton et al, 2000). VGF traffics through the secretory sytem where it is subject to endo-
proteolytic cleavage, generating small neuroactive peptides that are released upon depolarization (Po-
ssenti et al, 1989; Trani et al, 1995; Garcia et al, 2005; reviewed in Toshinai and Nakazato, 2009; Ferri et al, 
2011). VGF peptides play roles in energy and water balance, depression, sensory nerves and pain percep-
tion, reproduction and neuronal apoptosis, among others (reviwed in Ferri et al, 2011).

NGF-dependent expression of VGF in neuronal cells is controlled by numerous binding sites in the pro-
mixal promoter (Canu et al, 1997; Possenti et al, 1992; Di Rocco et al, 1997; D'Arcangelo et al, 1996; Mul-
lenbrock et al, 2011). Identified DNA-binding positive regulators of NGF-dependent VGF expression in-
clude EGR1, AP-1, SP-1, CREB family members, ASCL1 and TCF12, among others (Possenti et al, 2002; Di 
Rocco et al, 1997; D'Arcangelo et al, 1996; Mullenbrock et al, 2011; Adams et al, 2017; Mandolesi et al, 
2002).

Preceded by: p-CREB, ASCL1, TCF12, ATFs and p300 bind the VGF promoter, EGR1 binds the VGF gene
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EGR1 binds the TPH1 promoter ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9621032

Type: binding

Compartments: nucleoplasm

Inferred from: Egr1 binds the Tph1 promoter (Rattus norvegicus)

EGR1 binds to the TPH1 promoter as assessed by ChIP and electrophoretic mobility shift assay (EMSA) 
(Adams et al, 2017; Grasberger et al, 2013). EGR1 binding stimulates NGF-dependent signaling (Mulle-
nbrock et al, 2011; Adams et al, 2017).

Followed by: TPH1 gene expression
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TPH1 gene expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9621048

Type: omitted

Compartments: nucleoplasm, cytosol

TPH1 (Tryptophan hydroxylase 1) is one of two tryptophan hydroxlyase enzymes that catalyze the rate-
limiting step in the synthesis of 5-HT (5-hydroxytryptamine or serotonin). TPH1 is expressed in the gut, 
the periphery and in the pineal gland and additionally has roles during neuronal development. In con-
trast, TPH2 is expressed at high levels in the brain and the gut (Walther et al, 2003; Côté et al, 2003; Na-
kamura et al, 2006).

TPH1 has been shown to be a transcriptional target of EGR1 and is transcriptionally activated down-
stream of sustained NGF signaling (Grasberer et al, 2013; Mullenbrock et al, 2011; Adams et al, 2017).

Preceded by: EGR1 binds the TPH1 promoter
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EGR1 binds the TF gene ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9621035

Type: binding

Compartments: nucleoplasm

EGR1 binds to the promoter of the TF gene to induce transcription downstream of NGF, serum and PMA 
(Cui et al, 1996; Mullenbrock et al, 2011; Adams et al, 2017). TF encodes Tissue Factor F3, a key initiator 
of blood clotting (reviewed in Smith et al, 2015).

Followed by: TF gene expression
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TF gene expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9621042

Type: omitted

Compartments: nucleoplasm, plasma membrane

Tissue Factor F3 (TF) is an intrinsic plasma membrane protein that initiates blood clotting upon injury to 
the blood vessel (reviewed in Smith et al, 2015). TF is highly expressed in the brain and other tissues 
where the consequences of unchecked bleeding are high (Fleck et al, 1990). TF expression is regulated in 
part by binding of EGR1 to cognate sites in the promoter, and EGR1-dependent transcription has been 
observed downstream of sustained NGF signaling as well as after treatment wtith phorbol 12-myristate 
13-acetate (PMA) or serum (Mullenbrock et al, 2011; Adams et al, 2017; Cui et al, 1996).

Preceded by: EGR1 binds the TF gene
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EGR1 binds TRIB1 gene ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9621385

Type: binding

Compartments: nucleoplasm

Inferred from: Egr1 binds the Trib1 gene (Rattus norvegicus)

Based on ChIP studies done in rat PC12 cells, EGR1 binds to promoter elements updstream of the TRIB1 
gene to regulate NGF-dependent signaling (Mullenbrock et al, 2011; Adams et al, 2017).

Followed by: TRIB1 gene expression
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TRIB1 gene expression ↗

Location: NGF-stimulated transcription

Stable identifier: R-HSA-9621386

Type: omitted

Compartments: nucleoplasm, cytosol

TRIB1 is an adapter protein that interacts with COP1 ubiquitin ligase to regulate protein degradation (U-
ljon et al, 2016). Studies in rat PC12 cells identified TRIB1 as a target gene of EGR1 in response to sus-
tained NGF signaling, and EGR1 was shown to bind to cognate sites in the promoter as assessed by ChIP 
(Mullenbrock et al, 2011; Adams et al, 2017).

Preceded by: EGR1 binds TRIB1 gene
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