

ALOX15 oxidises 18(S)-HEPE to 18(S)-RvE3

Hansen, TV., Jassal, B.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of <u>Creative Commons Attribution 4.0 International (CC BY 4.0)</u> <u>License</u>. For more information see our <u>license</u>.

14/05/2024

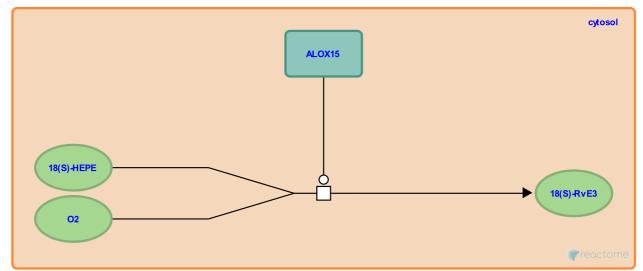
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

- Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. *BMC bioinformatics, 18,* 142. 7
- Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. et al. (2017). Reactome enhanced pathway visualization. *Bioinformatics*, 33, 3461-3467. A
- Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P. et al. (2018). The Reactome Pathway Knowledgebase. *Nucleic Acids Res, 46*, D649-D655. ↗
- Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P. et al. (2018). Reactome graph database: Efficient access to complex pathway data. *PLoS computational biology*, *14*, e1005968. *オ*


This document contains 1 reaction (see Table of Contents)

ALOX15 oxidises 18(S)-HEPE to 18(S)-RvE3 7

Stable identifier: R-HSA-9020610

Type: transition

Compartments: cytosol

Unlike resolvins E1 and E2, both of which are biosynthesised by neutrophils via the 5-lipoxygenase pathway, resolvin E3 (RvE3) is biosynthesised in eosinophils or resident macrophages via the 15-lipoxygenase (ALOX15) pathway. 18(S)-hydroxyeicosapentaenoic acid (18(S)-HEPE) is oxidised by ALOX15 (possibly through C13-hydrogen abstraction) into a number of dihydroxy-HEPEs including 17(R),18(S)-diHEPE (18(S)-RvE3) (Isobe et al. 2012, Isobe et al. 2013).

Literature references

- Arita, M., Masuda, K., Todoroki, H., Iwamoto, R., Arai, H., Inoue, M. et al. (2013). Stereochemical assignment and anti-inflammatory properties of the omega-3 lipid mediator resolvin E3. J. Biochem., 153, 355-60. 🛪
- Arita, M., Sasaki, K., Matsueda, S., Masuda, K., Taguchi, R., Fujihara, T. et al. (2012). Identification and structure determination of novel anti-inflammatory mediator resolvin E3, 17,18-dihydroxyeicosapentaenoic acid. J. Biol. Chem., 287, 10525-34. ↗

Editions

2017-09-08	Authored, Edited	Jassal, B.
2018-02-21	Reviewed	Hansen, TV.