

E2F7 forms homodimers

Di Stefano, L., Orlic-Milacic, M., Westendorp, B., de Bruin, A.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. *BMC bioinformatics*, 18, 142.

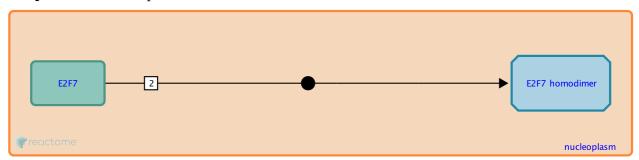
Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. et al. (2017). Reactome enhanced pathway visualization. *Bioinformatics*, 33, 3461-3467.

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P. et al. (2018). The Reactome Pathway Knowledgebase. *Nucleic Acids Res*, 46, D649-D655.

Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P. et al. (2018). Reactome graph data-base: Efficient access to complex pathway data. *PLoS computational biology, 14*, e1005968.

Reactome database release: 77

This document contains 1 reaction (see Table of Contents)


https://reactome.org Page 1

E2F7 forms homodimers

Stable identifier: R-HSA-8952996

Type: binding

Compartments: nucleoplasm

E2F7 forms homodimers (Di Stefano et al. 2003, Logan et al. 2004). While E2F7 also forms heterodimers with E2F8, co-immunoprecipitation experiments suggest that E2F7 has higher affinity for itself than for E2F8 (Li et al. 2008)

Literature references

Li, J., Ran, C., Li, E., Gordon, F., Comstock, G., Siddiqui, H. et al. (2008). Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. *Dev. Cell*, 14, 62-75.

Di Stefano, L., Jensen, MR., Helin, K. (2003). E2F7, a novel E2F featuring DP-independent repression of a subset of E2F-regulated genes. *EMBO J.*, 22, 6289-98. *¬*

Logan, N., Delavaine, L., Graham, A., Reilly, C., Wilson, J., Brummelkamp, TR. et al. (2004). E2F-7: a distinctive E2F family member with an unusual organization of DNA-binding domains. *Oncogene*, 23, 5138-50.

Editions

2016-12-21	Authored	Orlic-Milacic, M.
2017-01-03	Reviewed	Di Stefano, L.
2017-01-03	Edited	Orlic-Milacic, M.
2017-01-24	Reviewed	de Bruin, A., Westendorp, B.
2017-01-27	Edited	Orlic-Milacic, M.

https://reactome.org