

p-5Y-RET complexes bind GRB2

Jupe, S., Luo, W., Morales, D.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of <u>Creative Commons Attribution 4.0 International (CC BY 4.0)</u> <u>License</u>. For more information see our <u>license</u>.

18/05/2024

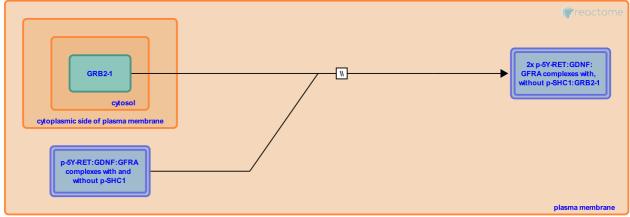
Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

- Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. *BMC bioinformatics, 18,* 142. 7
- Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. et al. (2017). Reactome enhanced pathway visualization. *Bioinformatics*, 33, 3461-3467. A
- Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P. et al. (2018). The Reactome Pathway Knowledgebase. *Nucleic Acids Res, 46*, D649-D655. ↗
- Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P. et al. (2018). Reactome graph database: Efficient access to complex pathway data. *PLoS computational biology*, *14*, e1005968. *オ*


This document contains 1 reaction (see Table of Contents)

p-5Y-RET complexes bind GRB2 ↗

Stable identifier: R-HSA-8853793

Type: omitted

Compartments: cytosol, plasma membrane

GDNF stimulation of neuronal cells induces the assembly of a large protein complex containing RET, GRB2 and tyrosine-phosphorylated SHC1, p85 subunit of (PI3K), GAB2 (GAB1 in Hayashi et al. 2000), and Tyrosine-protein phosphatase non-receptor type 11 (PTPN11, SHP-2) (Besset et al. 2000). GAB1 was found in complexes with GRB2 only after GDNF treatment (Hayashi et al. 2000). This contrasts with reports in other systems where GAB2-GRB2 were reported to constitutively associate (Gu et al. 1998). The likely order of recruitment to RET is SHC1, GRB2, GAB1/2, similar to the signaling mechanism of the Interleukin-3 receptor (Gu et al. 2000) and many others (Adams et al. 2012).

Literature references

- Shimono, Y., Murakumo, Y., Kurokawa, K., Murakami, H., Ichihara, M., Takahashi, M. et al. (2000). Characterization of intracellular signals via tyrosine 1062 in RET activated by glial cell line-derived neurotrophic factor. *Oncogene*, *19*, 4469-75. *¬*
- Scott, RP., Ibáñez, CF., Besset, V. (2000). Signaling complexes and protein-protein interactions involved in the activation of the Ras and phosphatidylinositol 3-kinase pathways by the c-Ret receptor tyrosine kinase. J. Biol. Chem., 275, 39159-66.

Editions

2016-01-25	Authored	Jupe, S.
2016-04-28	Edited	Jupe, S.
2016-05-06	Reviewed	Morales, D.
2016-05-17	Reviewed	Luo, W.