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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations 
are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many 
bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary 
literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the 
results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining 
knowledge from genomic studies, and by systems biologists building predictive models of normal and disease 
variant pathways. 
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), 
University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European 
Molecular Biology Laboratory (EBI Industry program).
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Threonine catabolism ↗

Stable identifier: R-HSA-8849175

The degradation of L-threonine to glycine in both prokaryotes and eukaryotes takes place through a two-step 
biochemical pathway in mitochondria (Dale 1978). In the first step, L-threonine is oxidised to 2-amino-3-
oxobutanoate. This reaction is catalysed by mitochondrial L-threonine 3-dehydrogenase tetramer (TDH tetramer). In 
the second step, mitochondrial 2-amino-3-ketobutyrate coenzyme A ligase (GCAT, aka KBL) catalyses the reaction 
between 2-amino-3-oxobutanoate and coenzyme A to form glycine and acetyl-CoA. GCAT resides on the 
mitochondrial inner membrane in dimeric form and requires pyridoxal 5-phosphate (PXLP) as cofactor. GCAT is 
thought to exist on the mitochondrial inner membrane in complex with TDH. With these two enzymes located 
together, it stops the rapid and spontaneous decarboxylation of 2A-3OBU to aminoacetone and carbon dioxide and 
instead, results in glycine formation (Tressel et al. 1986).
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TDH tetramer oxidises L-Thr to 2A-3OB ↗

Location: Threonine catabolism

Stable identifier: R-HSA-6798667

Type: transition

Compartments: mitochondrial inner membrane, mitochondrial matrix

The degradation of L-threonine to glycine in both prokaryotes and eukaryotes takes place through a two-step 
biochemical pathway. In the first step, L-threonine (L-Thr) is oxidised to 2-amino-3-oxobutanoate (2A-3OBU) using 
NAD+ as acceptor. This reaction is catalysed by mitochondrial L-threonine 3-dehydrogenase (TDH) (Edgar 2002). 
The human activity is inferred from the characterised porcine Tdh (Edgar 2002b, Kao & Davis 1994). TDH is 
thought to exist as a tetramer on the mitochondrial inner membrane in complex with dimeric 2-amino-3-ketobutyrate 
coenzyme A ligase (GCAT), the second enzyme in this pathway (Tressel et al. 1986). With these two enzymes 
located together, it stops the rapid and spontaneous decarboxylation of 2A-3OBU to aminoacetone and carbon 
dioxide and instead, results in glycine formation.

Followed by: PXLP-GCAT dimer ligates CoASH to 2A-3OB to form Gly and Ac-CoA
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PXLP-GCAT dimer ligates CoASH to 2A-3OB to form Gly and Ac-CoA ↗

Location: Threonine catabolism

Stable identifier: R-HSA-6798345

Type: transition

Compartments: mitochondrial inner membrane, mitochondrial matrix

The degradation of L-threonine to glycine in both prokaryotes and eukaryotes takes place through a two-step 
biochemical pathway. In the second step, mitochondrial 2-amino-3-ketobutyrate coenzyme A ligase (GCAT, aka 
KBL) catalyses the reaction between 2-amino-3-oxobutanoate (2A-3OBU) and coenzyme A (CoA-SH) to form 
glycine (Gly) and acetyl-CoA (Ac-CoA) (Edgar & Polak 2000). GCAT resides on the mitochondrial inner membrane 
and requires pyridoxal 5-phosphate (PXLP) as cofactor. It is strongly expressed in heart, brain, liver and pancreas. 
Dimeric GCAT:PXLP is thought to exist on the mitochondrial inner membrane in complex with tetrameric L-
threonine 3-dehydrogenase (TDH), the first enzyme in this pathway (Tressel et al. 1986). With these two enzymes 
located together, it stops the rapid and spontaneous decarboxylation of 2A-3OBU to aminoacetone and carbon 
dioxide and instead, results in glycine formation.

Preceded by: TDH tetramer oxidises L-Thr to 2A-3OB
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SDS dimers:PXLP dehydrate L-Thr to 2AA ↗

Location: Threonine catabolism

Stable identifier: R-HSA-9014627

Type: transition

Compartments: cytosol

Various PXLP-dependent enzymes can catalyse α, β-elimination reactions of amino acid substrates, ultimately 
yielding α-keto (or 2-oxo-) acid products. However, these enzymes, such as L-serine dehydratase/L-threonine 
deaminase (SDS aka TDH), only form the enamine intermediate as the remainder of the reaction occurs in solution 
with the enamine intermediate tautomerising to the imine form, which then spontaneously hydrolyzes to the final α-
keto acid product (Downs & Ernst 2015). SDS can dehydrate L-threonine (L-Thr) to form the intermediate enamine 
2-aminoacrylate (2AA), which can damage the pyridoxal 5'-phosphate cofactor (PXLP) of various enzymes, causing 
inactivation and significant cellular damage if allowed to accumulate (Lambrecht et al. 2013). SDS exists as a 
homodimer and requires PXLP for activity (Sun et al. 2005). An isoform of SDS, serine dehydratase-like (SDSL aka 
SDH2), is found in human cancer cell lines and possesses lower catalytic activity than SDS (Yamada et al. 2008).

Followed by: HRSP12 deaminates 2AA to 2OBUTA
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HRSP12 deaminates 2AA to 2OBUTA ↗

Location: Threonine catabolism

Stable identifier: R-HSA-9014641

Type: transition

Compartments: cytosol

The toxic enamine/imine intermediates generated by pyridoxal 5'-phosphate (PXLP) containing enzymes can cause 
severe cellular damage if allowed to accumulate (Downs & Ernst 2015). 2-iminobutanoate/2-iminopropanoate 
deaminase (RIDA aka HRSP12) is a widely conserved protein that prevents 2AA accumulation by facilitating its 
conversion to the stable metabolite 2-oxobutanoate (2OBUTA aka 2-ketobutyrate) (Cooper et al. 2011, Lambrecht et 
al. 2012, 2013, Niehaus et al. 2015).

Preceded by: SDS dimers:PXLP dehydrate L-Thr to 2AA
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