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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway 
annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-
referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions 
are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics research-
ers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioin-
formaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by 
systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 
HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and 
the European Molecular Biology Laboratory (EBI Industry program).
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Fructose catabolism ↗

Stable identifier: R-HSA-70350

Fructose occurs naturally in foods as a free monosaccharide and as a component of the disaccharide 
sucrose. It is also widely used as a sweetener. In the body, fructose catabolism occurs in the liver and to a 
lesser extent in the kidney and small intestine. In these tissues, it is converted to dihydroxyacetone phos-
phate and D-glyceraldehyde 3-phosphate, two intermediates in the glycolytic pathway, in a sequence of 
three reactions. It is phosphorylated to form fructose 1-phosphate, which is cleaved by aldolase to yield 
dihydroxyacetone phosphate and D-glyceraldehyde, and the latter compound is phosphorylated to yield 
D-glyceraldehyde 3-phosphate. Other pathways exist for the conversion of D-glyceraldehyde to interme-
diates of glycolysis, but these appear to play only a minor role in normal fructose metabolism (Sillero et 
al. 1969).
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KHK dimer phosphorylates Fru to Fru 1-P ↗

Location: Fructose catabolism

Stable identifier: R-HSA-70333

Type: transition

Compartments: cytosol

Cytosolic ketohexokinase (KHK, also known as fructokinase) catalyzes the reaction of D-fructose (Fru) 
and ATP to form D-fructose 1-phosphate (Fru 1-P) and ADP. Two isoforms of the enzyme, A and C, are 
encoded by alternatively spliced forms of the gene; both form catalytically active dimers. The C isoform 
is predominant in liver and kidney tissues, has high affinity for fructose, and is probably responsible for 
the bulk of fructose phosphorylation in vivo (Asipu et al. 2003; Trinh et al. 2009). The A isoform is found 
in lower levels in many other tissues and may serve a role in fructose metabolism outside of liver and 
kidney (Funari et al. 2005). The physiological role of KHK has been established from metabolic and DNA 
sequencing studies of patients with essential fructosuria (Bonthron et al. 1994) and in mouse models for 
this disease (Diggle et al. 2010; Ishimoto et al. 2012).

Followed by: ALDOB tetramer cleaves Fru-1-P to GA and DHAP
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ALDOB tetramer cleaves Fru-1-P to GA and DHAP ↗

Location: Fructose catabolism

Stable identifier: R-HSA-70342

Type: transition

Compartments: cytosol

Cytosolic aldolase B (ALDOB) catalyzes the reaction of D-fructose 1-phosphate (Fru 1-P) to form di-
hydroxyacetone phosphate (DHAP) and D-glyceraldehyde (GA) (Hers & Kusaka 1953; Schapira 1975). The 
active form of the enzyme is a tetramer (Dalby et al. 2001). Deficiencies in the enzyme are associated with 
hereditary fructose intolerance in vivo (e.g., Tolan 1995; Ali et al. 1998).

ALDOB is the same aldolase isoform that catalyzes the reversible cleavage of fructose-1,6-bisphosphate 
in glycolysis. This isoform, found in liver, kidney, and intestine, is approximately equally active with 
fructose 1 phosphate and fructose 1,6 bisphosphate as substrates at saturating concentrations, while the 
muscle and brain isoforms (ALDOA and ALDOC, respectively), have little activity with fructose-1-phos-
phate (Lebherz & Rutter 1969; Penhoet et el. 1969).

Preceded by: KHK dimer phosphorylates Fru to Fru 1-P

Followed by: ALDH1A1 oxidises GA to DGA, DAK dimer phosphorylates D-glyceraldehyde to form D-gly-
ceraldehyde 3-phosphate
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DAK dimer phosphorylates D-glyceraldehyde to form D-glyceraldehyde 3-phosphate 
↗

Location: Fructose catabolism

Stable identifier: R-HSA-70349

Type: transition

Compartments: cytosol

Cytosolic dihydroxyacetone kinase (DAK) catalyzes the reaction of ATP and D-glyceraldehyde (GA) to 
form ADP and D-glyceraldehyde 3-phosphate (GA3P). This reaction was originally characterized in stud-
ies of guinea pig liver and human erythrocytes (Hers & Kusaka 1953; Beutler & Guinto 1973). The human 
enzyme has been cloned and studied (Cabezas et al. 2005; Rodrigues et al. 2014). DAK/TKFC also catalyzes 
the phosphorylation of dihydroxyacetone (DHA) to dihydroxyacetone phosphate (DHAP), not a necessary 
step in fructose catabolism, but possibly functional on exogenous DHA. Triokinase activities on GA and 
DHA require homodimeric enzyme formed by two-domain subunits, where triose binds to one subunit 
and ATP to the other, each in a different domain.

DAK/TKFC is a bifunctional enzyme which, besides the ATP/Mg-dependent phosphorylation of GA and 
DHA, also catalyses, in presence of Mn2+, a unisubstrate reaction splitting flavin-adenine dinucleotide 
(FAD) into riboflavin cyclic 4',5'-phosphate (cyclic FMN) and AMP (Cabezas et al. 2005; Rodrigues et al. 
2014).

In addition, DAK/TKFC protein binds to MDA5 and acts as a negative regulator of MDA5-mediated induc-
tion of IFN-alpha/beta pathways (Diao et al. 2007). Potentially related to this TKFC effect are the observa-
tions that hepatic DAK/TKFC levels correlate with outcome in chronic hepatitis C patients treated with in-
terferon (Perdomo et al. 2012), and that a DAK/TKFC serum peptide is a predictor of disease severity in 
hepatitis B patients (Xu et al. 2013).

Preceded by: ALDOB tetramer cleaves Fru-1-P to GA and DHAP
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ALDH1A1 oxidises GA to DGA ↗

Location: Fructose catabolism

Stable identifier: R-HSA-6813749

Type: transition

Compartments: cytosol

Retinal dehydrogenase 1 (ALDH1A1 tetramer) is a cytosolic aldehyde dehydrogenase that can oxidise gly-
ceraldehyde (GA) to D-glycerate (DGA) (Yoval-Sanchez et al. 2013). DGA is a metabolite in a minor path-
way of fructose catabolism and serine catabolism.

Preceded by: ALDOB tetramer cleaves Fru-1-P to GA and DHAP

Followed by: GLYCTK phosphorylates DGA to 3PDGA
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GLYCTK phosphorylates DGA to 3PDGA ↗

Location: Fructose catabolism

Stable identifier: R-HSA-6799495

Type: transition

Compartments: cytosol

D-glyceric acid (DGA) is an intermediate of serine catabolism and of a minor pathway of fructose meta-
bolism. The only known fate of DGA is phosphorylation to 3-phospho-D-glyceric acid (3PDGA) by cytosol-
ic glycerate kinase (GLYCTK) (Gou et al. 2006). Defects in GLYCTK can cause D-glyceric aciduria (D-GA; 
MIM:220120), a rare inborn error of serine and fructose metabolism where DGA is excreted in large 
amounts in the urine. A variable phenotype is observed, ranging from severe mental retardation and 
death to milder speech delays and normal development (Van Schaftingen 1989, Sass et al. 2010).

Preceded by: ALDH1A1 oxidises GA to DGA
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