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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations 
are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many 
bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary 
literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the 
results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining 
knowledge from genomic studies, and by systems biologists building predictive models of normal and disease 
variant pathways. 
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), 
University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European 
Molecular Biology Laboratory (EBI Industry program).
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Glycolysis ↗

Stable identifier: R-HSA-70171

Compartments: cytosol

The reactions of glycolysis (e.g., van Wijk and van Solinge 2005) convert glucose 6-phosphate to pyruvate. The 
entire process is cytosolic. Glucose 6-phosphate is reversibly isomerized to form fructose 6-phosphate. 
Phosphofructokinase 1 catalyzes the physiologically irreversible phosphorylation of fructose 6-phosphate to form 
fructose 1,6-bisphosphate. In six reversible reactions, fructose 1,6-bisphosphate is converted to two molecules of 
phosphoenolpyruvate and two molecules of NAD+ are reduced to NADH + H+. Each molecule of 
phosphoenolpyruvate reacts with ADP to form ATP and pyruvate in a physiologically irreversible reaction. Under 
aerobic conditions the NADH +H+ can be reoxidized to NAD+ via electron transport to yield additional ATP, while 
under anaerobic conditions or in cells lacking mitochondria NAD+ can be regenerated via the reduction of pyruvate 
to lactate.

Literature references

van Wijk, R., van Solinge, WW. (2005). The energy-less red blood cell is lost: erythrocyte enzyme abnormalities of 
glycolysis. Blood, 106, 4034-42. ↗
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Regulation of Glucokinase by Glucokinase Regulatory Protein ↗

Location: Glycolysis

Stable identifier: R-HSA-170822

Glucokinase (GCK1) is negatively regulated by glucokinase regulatory protein (GKRP), which reversibly binds the 
enzyme to form an inactive complex. Binding is stimulated by fructose 6-phosphate and sorbitol 6-phosphate (hence 
high concentrations of these molecules tend to reduce GCK1 activity) and inhibited by fructose 1-phosphate (hence a 
high concentration of this molecule tends to increase GCK1 activity). Once formed, the complex is translocated to 
the nucleus. In the presence of high glucose concentrations, the nuclear GCK1:GKRP complex dissociates, freeing 
GCK1 to return to the cytosol. The free GKRP is thought also to return to the cytosol under these conditions, but this 
return has not been confirmed experimentally. Possible physiological roles for this sequestration process are to 
decrease futile cycling between glucose and glucose 6 phosphate in hepatocytes under low-glucose conditions, and to 
decrease the lag between a rise in intracellular glucose levels and the onset of glucose phosphorylation in both 
hepatocytes and pancreatic beta cells (Brocklehurst et al. 2004; Shiota et al. 1999).

Literature references
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Biol Chem, 274, 37125-30. ↗
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HK1,2,3,GCK,HKDC1 phosphorylate Glc to form G6P ↗

Location: Glycolysis

Stable identifier: R-HSA-70420

Type: transition

Compartments: cytosol

Cytosolic glucokinase and the three isoforms of hexokinase catalyze the irreversible reaction of glucose and ATP to 
form glucose 6 phosphate and ADP. In the body glucokinase is found only in hepatocytes and pancreatic beta cells. 
Glucokinase and the hexokinase enzymes differ in that glucokinase has a higher Km than the hexokinases and is less 
readily inhibited by the reaction product. As a result, glucokinase should be inactive in the fasting state when glucose 
concentrations are low but in the fed state should have an activity proportional to glucose concentration. These 
features are thought to enable efficient glucose uptake and retention in the liver, and to function as a sensor of 
glucose concentration coupled to insulin release in pancreatic beta cells (Thorens 2001). Glucokinase mutations are 
associated with MODY2, a heritable early onset form of type II diabetes (Tanizawa et al. 1991; Takeda et al. 1993). 
Three human hexokinase enzymes, which differ in their expression patterns have been characterized, HK1 (Aleshin 
et al. 1998), HK2 (Lehto et al. 1995), and HK3 (Rijksen at al. 1982).

An additional gene product, HKDC1, although not classically associated with glycolysis in adult tissues, has 
hexokinase activity in vitro and may have a role in glucose homeostasis during embryonic development (Guo et al. 
2015; Pusik et al. 2019; Zapater et al. 2022). HKDC1 has therefore been annotated here as a candidate member of 
the set of enzymes that mediates glucose phosphorylation.

Followed by: PGM2L1:Mg2+ phosphorylates G6P to G1,6BP, alpha-D-glucose 6-phosphate <=> D-fructose 
6-phosphate
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ADPGK:Mg2+ phosphorylates Glc to G6P ↗

Location: Glycolysis

Stable identifier: R-HSA-5696021

Type: transition

Compartments: endoplasmic reticulum membrane, cytosol

Glucose phosphorylation is a central event in cellular metabolism. ADP-dependent glucokinase (ADPGK) can 
phosphorylate glucose (Glc) using ADP as the phosphate donor to glucose 6-phopshate (G6P). To date, it has not 
been established whether this phosphorylation supports a significant role in priming glucose for a metabolic fate 
other than glycolysis (Richter et al. 2012). Stdies of metabolic changes during T cell activation suggest a role for it 
there (Kaminski et al. 2012).

Followed by: alpha-D-glucose 6-phosphate <=> D-fructose 6-phosphate

Literature references
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alpha-D-glucose 6-phosphate <=> D-fructose 6-phosphate ↗

Location: Glycolysis

Stable identifier: R-HSA-70471

Type: transition

Compartments: cytosol

Cytosolic phosphoglucose isomerase catalyzes the reversible interconversion of glucose 6-phosphate and fructose 6-
phosphate (Tsuboi et al. 1958; Noltmann 1972; Bloxham and Lardy 1973). The active form of the enzyme is a 
homodimer (Read et al. 2001). Mutations in the enzyme are associated with hemolytic anemia (Xu and Beutler 
1994).

Preceded by: HK1,2,3,GCK,HKDC1 phosphorylate Glc to form G6P, ADPGK:Mg2+ phosphorylates Glc to 
G6P

Followed by: D-fructose 6-phosphate + ATP => D-fructose 1,6-bisphosphate + ADP

Literature references

Beutler, E., Xu, W. (1994). The characterization of gene mutations for human glucose phosphate isomerase defi-
ciency associated with chronic hemolytic anemia. J Clin Invest, 94, 2326-9. ↗
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Muirhead, H., Read, J., Li, X., Davies, C., Chirgwin, J., Pearce, J. (2001). The crystal structure of human phosphogluc-
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aemia. J Mol Biol, 309, 447-63. ↗
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GNPDA1,2 hexamers deaminate GlcN6P to Fru(6)P ↗

Location: Glycolysis

Stable identifier: R-HSA-6799604

Type: transition

Compartments: cytosol

Glucosamine-6-phosphate isomerases 1 and 2 (GNPDA1, 2) catalyse the reversible deamination and with an 
aldo/keto isomerisation of D-glucosamine 6-phosphate (GlcN6P) to D-fructose 6-phosphate (Fru(6)P) and ammonia 
(NH3). GNDPA1 and 2 function as homohexamers in the cytosol. This reaction could provide a source of energy 
from catabolic pathways of hexosamines found in glycoproteins and glycolipids (Wolosker et al. 1998, Zhang et al. 
2003, Arreola et al. 2003).

Followed by: D-fructose 6-phosphate + ATP => D-fructose 1,6-bisphosphate + ADP

Literature references

Chen, G., Wan, T., Li, N., Zou, D., Cao, X., Zhang, W. et al. (2003). Cloning and functional characterization of GNPI2, 
a novel human homolog of glucosamine-6-phosphate isomerase/oscillin. J. Cell. Biochem., 88, 932-40. ↗

Schnaar, RL., Wolosker, H., Kline, D., Cameron, AM., Snyder, SH., Blackshaw, S. et al. (1998). Molecularly cloned 
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inases: a structural and genetic study. FEBS Lett., 551, 63-70. ↗
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Regulation of glycolysis by fructose 2,6-bisphosphate metabolism ↗

Location: Glycolysis

Stable identifier: R-HSA-9634600

Compartments: cytosol

The committed step of glycolysis is the phosphorylation of D-fructose 6-phosphate (Fru(6)P) to form D-fructose 1,6-
bisphosphate, catalyzed by phosphofructokinase 1 (PFK) tetramer. PFK can be allosterically activated by D-fructose 
2,6-bisphosphate whose levels are increased in response to insulin signaling and decreased in response to glucagon 
signaling, through the reactions annotated here (Pilkis et al. 1995).

Literature references

Kurland, IJ., Lange, AJ., Pilkis, SJ., Claus, TH. (1995). 6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase: a meta-
bolic signaling enzyme. Annu Rev Biochem, 64, 799-835. ↗
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D-fructose 6-phosphate + ATP => D-fructose 1,6-bisphosphate + ADP ↗

Location: Glycolysis

Stable identifier: R-HSA-70467

Type: transition

Compartments: cytosol

Cytosolic phosphofructokinase 1 catalyzes the reaction of fructose 6-phosphate and ATP to form fructose 1,6-
bisphosphate and ADP. This reaction, irreversible under physiological conditions, is the rate limiting step of 
glycolysis. Phosphofructokinase 1 activity is allosterically regulated by ATP, citrate, and fructose 2,6-bisphosphate.

Phosphofructokinase 1 is active as a tetramer (although higher order multimers, not annotated here, may form in 
vivo). Two isoforms of phosphofructokinase 1 monomer, L and M, are widely expressed in human tissues. Different 
tissues can contain different homotetramers or heterotetramers: L4 in liver, M4 in muscle, and all possible 
heterotetramers, L4, L3M, L2M2, LM3, and M4, in red blood cells, for example (Raben et al. 1995; Vora et al. 1980, 
1987; Vora 1981). A third isoform, P, is abundant in platelets, where it is found in P4, P3L, P2L2, and PL3 tetramers 
(Eto et al. 1994; Vora et al. 1987).

Preceded by: alpha-D-glucose 6-phosphate <=> D-fructose 6-phosphate, GNPDA1,2 hexamers deaminate 
GlcN6P to Fru(6)P

Followed by: D-fructose 1,6-bisphosphate <=> dihydroxyacetone phosphate + D-glyceraldehyde 3-phos-
phate

Literature references

Vora, S. (1981). Isozymes of human phosphofructokinase in blood cells and cultured cell lines: molecular and genet-
ic evidence for a trigenic system. Blood, 57, 724-32. ↗

Piomelli, S., Vora, S., Seaman, C., Durham, S. (1980). Isozymes of human phosphofructokinase: identification and 
subunit structural characterization of a new system. Proc Natl Acad Sci U S A, 77, 62-6. ↗

Sherman, JB., Raben, N., Spiegel, R., Heinisch, J., Nakajima, H., Plotz, P. et al. (1995). Functional expression of hu-
man mutant phosphofructokinase in yeast: genetic defects in French Canadian and Swiss patients with phospho-
fructokinase deficiency. Am J Hum Genet, 56, 131-41. ↗

Yazaki, Y., Kadowaki, T., Moriuchi, R., Nagataki, S., Hayakawa, T., Kawasaki, E. et al. (1994). Cloning of a complete 
protein-coding sequence of human platelet-type phosphofructokinase isozyme from pancreatic islet. Biochem 
Biophys Res Commun, 198, 990-8. ↗
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D-fructose 1,6-bisphosphate <=> dihydroxyacetone phosphate + D-glyceraldehyde 3-
phosphate ↗

Location: Glycolysis

Stable identifier: R-HSA-71496

Type: transition

Compartments: cytosol

Cytosolic aldolase catalyzes the cleavage of D-fructose 1,6-bisphosphate to yield dihydroxyacetone phosphate and 
D-glyceraldehyde 3-phosphate. The active form of aldolase is a homotetramer. Three aldolase isozymes have been 
identified which differ in their patterns of expression in various adult tissues and during development but are 
otherwise functionally indistinguishable (Ali and Cox 1995; Freemont et al. 1984, 1988).

Preceded by: D-fructose 6-phosphate + ATP => D-fructose 1,6-bisphosphate + ADP

Followed by: dihydroxyacetone phosphate <=> D-glyceraldehyde 3-phosphate

Literature references

Cox, TM., Ali, M. (1995). Diverse mutations in the aldolase B gene that underlie the prevalence of hereditary fructose 
intolerance. Am J Hum Genet, 56, 1002-5. ↗

Dunbar, B., Freemont, PS., Fothergill, LA. (1984). Human skeletal-muscle aldolase: N-terminal sequence analysis of 
CNBr- and o-iodosobenzoic acid-cleavage fragments. Arch Biochem Biophys, 228, 342-52. ↗

Dunbar, B., Fothergill-Gilmore, LA. (1988). The complete amino acid sequence of human skeletal-muscle fructose-bi-
sphosphate aldolase. Biochem J, 249, 779-88. ↗
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dihydroxyacetone phosphate <=> D-glyceraldehyde 3-phosphate ↗

Location: Glycolysis

Stable identifier: R-HSA-70454

Type: transition

Compartments: cytosol

Cytosolic triose phosphate isomerase catalyzes the freely reversible interconversion of dihydroxyacetone phosphate 
and glyceraldehyde 3-phosphate (Lu et al. 1984). The active form of the enzyme is a homodimer (Kinoshita et al. 
2005).

Preceded by: D-fructose 1,6-bisphosphate <=> dihydroxyacetone phosphate + D-glyceraldehyde 3-phos-
phate

Followed by: D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + 
NADH + H+

Literature references

Gracy, RW., Yuan, PM., Lu, HS. (1984). Primary structure of human triosephosphate isomerase. J Biol Chem, 259, 
11958-68. ↗

Maruki, R., Warizaya, M., Nishimura, S., Kinoshita, T., Nakajima, H. (2005). Structure of a high-resolution crystal 
form of human triosephosphate isomerase: improvement of crystals using the gel-tube method. Acta Crystallogr 
Sect F Struct Biol Cryst Commun, 61, 346-9. ↗
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D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-gly-
cerate + NADH + H+ ↗

Location: Glycolysis

Stable identifier: R-HSA-70449

Type: transition

Compartments: cytosol

Cytosolic glyceraldehyde 3-phosphate dehydrogenase catalyzes the reversible reaction of glyceraldehyde 3-
phosphate, orthophosphate, and NAD+ to form NADH + H+ and 1,3-bisphosphoglycerate, the first energy rich 
intermediate of glycolysis. The biochemical details of this reaction were worked out by C and G Cori and their 
colleagues (Taylor et al. 1948; Cori et al. 1948).

While there are multiple human glyceraldehyde 3-phosphate dehydrogenase-like pseudogenes, there is only one 
glyceraldehyde 3-phosphate dehydrogenase gene expressed in somatic tissue (Benham and Povey 1989; Heinz and 
Freimuller 1982; Ercolani et al. 1988), and studies of aged human erythrocytes suggest that variant forms of the 
enzyme arise as a result of post-translational modifications (Edwards et al. 1976). There is, however, an authentic 
second isoform of glyceraldehyde 3-phosphate dehydrogenase whose expression is confined to spermatogenic cells 
of the testis (Welch et al. 2000).

Preceded by: dihydroxyacetone phosphate <=> D-glyceraldehyde 3-phosphate

Followed by: BPGM dimer isomerises 1,3BPG to 2,3BPG, 1,3-bisphospho-D-glycerate + ADP <=> 3-phos-
pho-D-glycerate + ATP

Literature references

Benham, FJ., Povey, S. (1989). Members of the human glyceraldehyde-3-phosphate dehydrogenase-related gene fam-
ily map to dispersed chromosomal locations. Genomics, 5, 209-14. ↗

VELICK, SF., TAYLOR, JF. (1948). The prosthetic group of crystalline d-glyceraldehyde-3-phosphate dehydrogenase. 
J. Biol. Chem., 173, 619-26. ↗

Cori, CF., Slein, MW., Cori, GT. (1948). Crystalline D-glyceraldehyde-3-phosphate dehydrogenase from rabbit muscle
. J Biol Chem, 173, 605-618. ↗

Eddy, EM., Bunch, DO., Mori, C., O'Brien, DA., Magyar, PL., Welch, JE. et al. (2000). Human glyceraldehyde 3-phos-
phate dehydrogenase-2 gene is expressed specifically in spermatogenic cells. J Androl, 21, 328-38. ↗
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Edwards, YH., Harris, H., Clark, P. (1976). Isozymes of glyceraldehyde-3-phosphate dehydrogenase in man and other 
mammals. Ann Hum Genet, 40, 67-77. ↗
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BPGM dimer isomerises 1,3BPG to 2,3BPG ↗

Location: Glycolysis

Stable identifier: R-HSA-6798335

Type: transition

Compartments: cytosol

Bisphosphoglycerate mutase (BPGM) is an erythrocyte-specific trifunctional enzyme. One of its functions is the 
isomerisation of 1,3-bisphosphoglycerate (1,3BPG) to 2,3-bisphosphoglycerate (2,3BPG) (Rose 1968). In red blood 
cells, 2,3BPG is the main allosteric effector of hemoglobin, binding preferentially to the deoxygenated hemoglobin 
tetramer, thus reducing oxygen affinity (Arnone 1972).

Preceded by: D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + 
NADH + H+

Literature references

Rose, ZB. (1968). The purification and properties of diphosphoglycerate mutase from human erythrocytes. J. Biol. 
Chem., 243, 4810-20. ↗

Arnone, A. (1972). X-ray diffraction study of binding of 2,3-diphosphoglycerate to human deoxyhaemoglobin. Nature, 
237, 146-9. ↗

Editions
2015-09-18 Authored, Edited Jassal, B.

2016-01-11 Reviewed D'Eustachio, P.

https://reactome.org Page 17

https://reactome.org/content/detail/R-HSA-6798335
http://www.ncbi.nlm.nih.gov/pubmed/5687724
http://www.ncbi.nlm.nih.gov/pubmed/4555506
https://reactome.org


PGM2L1:Mg2+ phosphorylates G6P to G1,6BP ↗

Location: Glycolysis

Stable identifier: R-HSA-8955760

Type: transition

Compartments: cytosol

1,3-bisphosphoglycerate (1,3BPG) is the first energy rich intermediate of glycolysis. Cytosolic glucose 1,6-
bisphosphate synthase (PGM2L1) utilises 1,3BPG as a phosphate donor to phosphorylate a series of 1-phosphate 
sugars. Although 5- and 6-phosphate sugars are poor substrates for PGM2L1, glucose 6-phosphate (G6P) is the 
exception (Maliekal et al. 2007, Veiga-da-Cunha et al. 2008). PGM2L1 complexed with Mg2+ as cofactor, 
phosphorylates G6P to glucose 1,6-bisphosphate (G1,6BP), a cofactor for phosphomutases and a putative regulator 
of glycolysis. PGM2L1 is mainly expressed in brain where its activity is particularly high (Maliekal et al. 2007).

Preceded by: HK1,2,3,GCK,HKDC1 phosphorylate Glc to form G6P

Followed by: PGP:Mg2+ dimer hydrolyses 3PG to glycerol, 3-Phospho-D-glycerate <=> 2-Phospho-D-gly-
cerate

Literature references

Maliekal, P., Matthijs, G., Vleugels, W., Veiga-da-Cunha, M., Van Schaftingen, E. (2008). Mammalian phosphoman-
nomutase PMM1 is the brain IMP-sensitive glucose-1,6-bisphosphatase. J. Biol. Chem., 283, 33988-93. ↗

Maliekal, P., Veiga-da-Cunha, M., Sokolova, T., Van Schaftingen, E., Vertommen, D. (2007). Molecular identification 
of mammalian phosphopentomutase and glucose-1,6-bisphosphate synthase, two members of the alpha-D-phos-
phohexomutase family. J Biol Chem, 282, 31844-51. ↗
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1,3-bisphospho-D-glycerate + ADP <=> 3-phospho-D-glycerate + ATP ↗

Location: Glycolysis

Stable identifier: R-HSA-71850

Type: transition

Compartments: cytosol

Cytosolic phosphoglycerate kinase (PGK) catalyzes the reaction of ADP and 1,3-bisphosphoglycerate (1,3BPG) to 
form D glyceraldehyde 3-phosphate (3PG) and ATP. The active form of the enzyme is a monomer and requires 
Mg++ (Yoshida and Watanabe 1972; Huang et al. 1980a,b). This is the first substrate level phosphorylation reaction 
in glycolysis. Two PGK isoforms are known: PGK1 is widely expressed in the body while PGK2 (Chen et al. 1976; 
McCarrey & Thomas 1987) appears to be confined to sperm cells.

Preceded by: D-glyceraldehyde 3-phosphate + orthophosphate + NAD+ <=> 1,3-bisphospho-D-glycerate + 
NADH + H+

Followed by: PGP:Mg2+ dimer hydrolyses 3PG to glycerol, 3-Phospho-D-glycerate <=> 2-Phospho-D-gly-
cerate

Literature references

Welch, CD., Huang, IY., Yoshida, A. (1980). Complete amino acid sequence of human phosphoglycerate kinase. Cy-
anogen bromide peptides and complete amino acid sequence. J Biol Chem, 255, 6412-20. ↗

Donahue, RP., Scott, CR., Chen, SH. (1976). Characterization of phosphoglycerate kinase from human spermatozoa. 
Fertil. Steril., 27, 699-701. ↗

Watanabe, S., Yoshida, A. (1972). Human phosphoglycerate kinase. I. Crystallization and characterization of normal 
enzyme. J Biol Chem, 247, 440-5. ↗

Rubinfien, E., Huang, IY., Yoshida, A. (1980). Complete amino acid sequence of human phosphoglycerate kinase. 
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PGP:Mg2+ dimer hydrolyses 3PG to glycerol ↗

Location: Glycolysis

Stable identifier: R-HSA-8955794

Type: transition

Compartments: cytosol

Inferred from: Pgp:Mg2+ dimer hydrolyses 3PG to glycerol (Rattus norvegicus)

Glycerol-3-phosphate (aka 3-phospho-D-glycerate, 3PG) is a metabolic intermediate of glucose, lipid and energy 
metabolism. Its cellular levels may be regulated by cytosolic glycerol-3-phosphate phosphatase (PGP aka G3PP), 
which hydrolyses 3PG to glycerol. PGP functions as a homodimer, binding one Mg2+ ion per subunit. The function 
of the human protein is inferred from rat Pgp characterisation and functional studies (Mugabo et al. 2016).

Preceded by: 1,3-bisphospho-D-glycerate + ADP <=> 3-phospho-D-glycerate + ATP, PGM2L1:Mg2+ phos-
phorylates G6P to G1,6BP

Literature references

Gezzar, S., Zhang, D., Lamontagne, J., Al-Mass, A., Zhao, S., Iglesias, J. et al. (2016). Identification of a mammalian 
glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes. Proc. 
Natl. Acad. Sci. U.S.A., 113, E430-9. ↗
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3-Phospho-D-glycerate <=> 2-Phospho-D-glycerate ↗

Location: Glycolysis

Stable identifier: R-HSA-71654

Type: transition

Compartments: cytosol

Cytosolic phosphoglycerate mutase catalyzes the reversible isomerisation of 3- and 2-phosphoglycerate. The active 
form of the enzyme is a dimer. There are two isoforms of this enzyme, PGAM1 (isoform B, widely expressed in 
non-muscle tissue) and PGAM2 (isoform M, expressed in muscle) (Blouquit et al. 1988; Omenn and Cheung 1974; 
Repiso et al. 2005; Tsujino et al. 1993).

Preceded by: 1,3-bisphospho-D-glycerate + ADP <=> 3-phospho-D-glycerate + ATP, PGM2L1:Mg2+ phos-
phorylates G6P to G1,6BP

Followed by: 2-Phospho-D-glycerate <=> Phosphoenolpyruvate + H2O

Literature references

Omenn, GS., Cheung, SC. (1974). Phosphoglycerate mutase isozyme marker for tissue differentiation in man. Am J 
Hum Genet, 26, 393-9. ↗
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2-Phospho-D-glycerate <=> Phosphoenolpyruvate + H2O ↗

Location: Glycolysis

Stable identifier: R-HSA-71660

Type: transition

Compartments: cytosol

Cytosolic enolase catalyzes the reversible reaction of 2 phosphoglycerate to form phosphoenolpyruvate and water, 
elevating the transfer potential of the phosphoryl group.

Enolase is a homodimer and requires Mg++ for activity. Three isozymes have been purified and biochemically 
characterized. The alpha isoform is expressed in many normal human tissues (Giallongo et al. 1986). The beta 
isoform is expressed in muscle. Evidence for its function in vivo in humans comes from studies of a patient in whom 
a point mutation in the gene encoding the enzyme was associated specifically with reduced enolase activity in 
muscle extracts and with other symptoms consistent with a defect in glycolysis (Comi et al. 2001). The gamma 
isoform of human enolase is normally expressed in neural tissue and is of possible clinical interest as a marker of 
some types of neuroendocrine and lung tumors (McAleese et al. 1988). Biochemical studies of the homologous rat 
proteins indicate that both homo- and heterodimers of enolase form and are enzymatically active (Rider and Taylor 
1974).

A fourth candidate isozyme, ENO4, has been identified in the human and mouse genomes. The mouse form of the 
gene encodes a protein with enolase activity that is expressed in sperm and whose disruption is associated with 
abnormal sperm morphology (Nakamura et al. 2013).

Preceded by: 3-Phospho-D-glycerate <=> 2-Phospho-D-glycerate

Followed by: PKM dephosphorylates PEP to PYR

Literature references

Rider, CC., Taylor, CB. (1974). Enolase isoenzymes in rat tissues. Electrophoretic, chromatographic, immunological 
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PKM dephosphorylates PEP to PYR ↗

Location: Glycolysis

Stable identifier: R-HSA-71670

Type: transition

Compartments: cytosol

Cytosolic pyruvate kinase catalyzes the transfer of a high-energy phosphate from phosphoenolpyruvate to ADP, 
forming pyruvate and ATP. This reaction, an instance of substrate-level phosphorylation, is essentially irreversible 
under physiological conditions.

Four isozymes of human pyruvate kinase have been described, L, R, M1 and M2. Isozymes L and R are encoded by 
alternatively spliced transcripts of the PKLR gene; isozymes M1 and M2 are encoded by alternatively spliced 
transcripts of PKM2. In the body, L pyruvate kinase is found in liver (Tani et al. 1988), R in red blood cells (Kanno 
et al. 1991), M1 in muscle, heart and brain (Takenaka et al. 1991), and M2 in early fetal tissues and tumors (e.g., Lee 
et al. 2008). In all cases, the active form of the enzyme is a homotetramer, activated by fructose 1,6-bisphosphate 
(Valentini et al. 2002; Dombrauckas et al. 2005). Mutations in PKLR have been associated with hemolytic anemias 
(e.g., Zanella et al. 2005).

Preceded by: 2-Phospho-D-glycerate <=> Phosphoenolpyruvate + H2O
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