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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway 
annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-
referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions 
are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics research-
ers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioin-
formaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by 
systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 
HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and 
the European Molecular Biology Laboratory (EBI Industry program).
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G2/M Transition ↗

Stable identifier: R-HSA-69275

Together with two B-type cyclins, CCNB1 and CCNB2, Cdc2 (CDK1) regulates the transition from G2 into 
mitosis. CDK1 can also form complexes with Cyclin A (CCNA1 and CCNA3). CDK1 complexes with A and 
B type cyclins are activated by dephosphorylation of CDK1 threonine residue T14 and tyrosine residue 
Y15. Cyclin A:CDK1 and Cyclin B:CDK1 complexes phosphorylate several proteins involved in mitotic 
spindle formation and function, the breakdown of the nuclear envelope, and chromosome condensation 
that is necessary for the ~2 meters of DNA to be segregated at mitosis (Nigg 1998, Nilsson and Hoffmann 
2000, Salaun et al. 2008, Fisher et al. 2012). 
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Cyclin A/B1/B2 associated events during G2/M transition ↗

Location: G2/M Transition

Stable identifier: R-HSA-69273

Cell cycle progression is regulated by cyclin-dependent protein kinases at both the G1/S and the G2/M 
transitions. The G2/M transition is regulated through the phosphorylation of nuclear lamins and histones 
(reviewed in Sefton, 2001).

The two B-type cyclins localize to different regions within the cell and are thought to have specific roles 
as CDK1-activating subunits (see Bellanger et al., 2007). Cyclin B1 is primarily cytoplasmic during in-
terphase and translocates into the nucleus at the onset of mitosis (Jackman et al., 1995; Hagting et al., 
1999). Cyclin B2 colocalizes with the Golgi apparatus and contributes to its fragmentation during mitosis 
(Jackman et al., 1995; Draviam et al., 2001).
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Regulation of PLK1 Activity at G2/M Transition ↗

Location: G2/M Transition

Stable identifier: R-HSA-2565942

Compartments: cytosol

The kinase activity of PLK1 is required for cell cycle progression as PLK1 phosphorylates and regulates a 
number of cellular proteins during mitosis. Centrosomic AURKA (Aurora A kinase), catalytically activ-
ated through AJUBA facilitated autophosphorylation on threonine residue T288 at G2/M transition 
(Hirota et al. 2003), activates PLK1 on centrosomes by phosphorylating threonine residue T210 of PLK1, 
critical for PLK1 activity (Jang et al. 2002), in the presence of BORA (Macurek et al. 2008, Seki et al. 2008). 
Once activated, PLK1 phosphorylates BORA and targets it for ubiquitination mediated degradation by 
SCF-beta-TrCP ubiquitin ligases. Degradation of BORA is thought to allow PLK1 to interact with other 
substrates (Seki, Coppinger, Du et al. 2008, Seki et al. 2008).

The interaction of PLK1 with OPTN (optineurin) provides a negative-feedback mechanism for regulation 
of PLK1 activity. Phosphorylated PLK1 binds and phosphorylates OPTN associated with the Golgi mem-
brane GTPase RAB8, promoting dissociation of OPTN from Golgi and translocation of OPTN to the nucle-
us. Phosphorylated OPTN facilitates the mitotic phosphorylation of the myosin phosphatase subunit 
PPP1R12A (MYPT1) and myosin phosphatase activation (Kachaner et al. 2012). The myosin phosphatase 
complex dephosphorylates threonine residue T210 of PLK1 and inactivates PLK1 (Yamashiro et al. 2008).
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Polo-like kinase mediated events ↗

Location: G2/M Transition

Stable identifier: R-HSA-156711

Compartments: nucleoplasm

At mitotic entry, Plk1 phosphorylates and activates Cdc25C phosphatase, whereas it phosphorylates and 
down-regulates  Wee1A (Watanabe et al. 2004).  Plk1 also phosphorylates and inhibits Myt1 activity 
(Sagata 2005). Cyclin B1-bound Cdc2, which is the target of Cdc25C, Wee1A,  and Myt1, functions in a 
feedback loop and phosphorylates the latter components (Cdc25C, Wee1A, Myt1). The Cdc2- dependent 
phosphorylation provides docking sites for the polo-box domain of Plk1, thus promoting the Plk1-de-
pendent  regulation of these components and, as a result, activation of Cdc2-Cyclin B1.

PLK1 phosphorylates and activates the transcription factor FOXM1 which stimulates the expression of a 
number of genes needed for G2/M transition, including PLK1, thereby creating a positive feedback loop 
(Laoukili et al. 2005, Fu et al. 2008, Sadasivam et al. 2012, Chen et al. 2013). 
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Centrosome maturation ↗

Location: G2/M Transition

Stable identifier: R-HSA-380287

The centrosome is the primary microtubule organizing center (MTOC) in vertebrate cells and plays an 
important role in orchestrating  the formation of the mitotic spindle. Centrosome maturation is an early 
event in this process and involves a major reorganization of centrosomal material at the G2/M transition. 
During maturation, centrosomes  undergo a dramatic increase in size and microtubule nucleating capa-
city. As part of this process, a number of proteins and complexes, including some that are required for 
microtubule nucleation and anchoring, are recruited to the centrosome while others that are required 
for organization of interphase microtubules and centrosome cohesion are  lost (reviewed in Schatten, 
2008; Raynaud-Messina and Merdes 2007).
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The role of GTSE1 in G2/M progression after G2 checkpoint ↗

Location: G2/M Transition

Stable identifier: R-HSA-8852276

GTSE1 (B99) was identified as a microtubule-associated protein product of the mouse B99 gene, which ex-
hibits both a cell cycle regulated expression, with highest levels in G2, and DNA damage triggered ex-
pression under direct control of TP53 (p53) (Utrera et al. 1998, Collavin et al. 2000). Human GTSE1, simil-
ar to the mouse counterpart, binds to microtubules, shows cell cycle regulated expression with a peak in 
G2 and plays a role in G2 checkpoint recovery after DNA damage but is not transcriptionally regulated by 
TP53 (Monte et al. 2003, Monte et al. 2004, Scolz et al. 2012).

In G1 cells, GTSE1 is found at the microtubule lattice, likely due to direct binding to tubulin. An evolu-
tionarily conserved interaction between GTSE1 and MAPRE1 (EB1), a microtubule plus end protein, pro-
motes GTSE1 localization to the growing tip of the microtubules, which contributes to cell migration and 
is likely involved in cancer cell invasiveness. Highly invasive breast cancer cell lines exhibit high GTSE1 
levels in G1, while GTSE1 levels in G1 are normally low. At the beginning of mitotic prometaphase, 
GTSE1 is phosphorylated by mitotic kinase(s), possibly CDK1, in proximity to the MAPRE1-binding re-
gion, causing GTSE1 dissociation from the plus end microtubule ends (Scolz et al. 2012).

During G2 checkpoint recovery (cell cycle re-entry after DNA damage induced G2 arrest), GTSE1 relo-
cates to the nucleus where it binds TP53 and, in an MDM2-dependent manner, promotes TP53 cytoplas-
mic translocation and proteasome mediated degradation (Monte et al. 2003, Monte et al. 2004). Reloca-
tion of GTSE1 to the nucleus in G2 phase depends on PLK1-mediated phosphorylation of GTSE1 (Liu et al. 
2010).

GTSE1-facilitated down-regulation of TP53 in G2 allows cells to avoid TP53 mediated apoptosis upon DNA 
damage and to re-enter cell cycle (Monte et al. 2003). While TP53 down-regulation mediated by GTSE1 in 
G2 correlates with decreased expression of TP53 target genes involved in apoptosis and cell cycle arrest, 
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GTSE1 can also increase the half-life of the TP53 target p21 (CDKN1A). GTSE1-mediated stabilization of 
CDKN1A involves interaction of GTSE1 with CDKN1A and its chaperone complex, consisting of HSP90 
and FKBPL (WISp39), and may be involved in resistance to paclitaxel treatment (Bublik et al. 2010).
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AURKA Activation by TPX2 ↗

Location: G2/M Transition

Stable identifier: R-HSA-8854518

TPX2 binds to aurora kinase A (AURKA) at centrosomes and promotes its activation by facilitating 
AURKA active conformation and autophosphorylation of the AURKA threonine residue T288 (Bayliss et 
al. 2003, Xu et al. 2011, Giubettini et al. 2011, Dodson and Bayliss 2012).
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FBXL7 down-regulates AURKA during mitotic entry and in early mitosis ↗

Location: G2/M Transition

Stable identifier: R-HSA-8854050

Compartments: cytosol

The protein levels of aurora kinase A (AURKA) during mitotic entry and in early mitosis can be reduced 
by the action of the SCF-FBXL7 E3 ubiquitin ligase complex consisting of SKP1, CUL1, RBX1 and FBXL7 
subunits. FBXL7 is the substrate recognition subunit of the SCF-FBXL7 complex that associates with the 
centrosome-bound AURKA, promoting its ubiquitination and proteasome-mediated degradation. Overex-
pression of FBXL7 results in G2/M cell cycle arrest and apoptosis (Coon et al. 2011).

FBXL7 protein levels are down-regulated by the action of the SCF-FBXL18 E3 ubiquitin ligase complex, 
consisting of SKP1, CUL1, RBX1 and the substrate recognition subunit FBXL18. FBXL18 binds to the FQ 
motif of FBXL7, targeting it for ubiquitination and proteasome-mediated degradation, counteracting its 
pro-apoptotic activity (Liu et al. 2015). Cell cycle stage-dependency of down-regulation of FBXL7 by 
FBXL18 is unknown. 
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Interaction between PHLDA1 and AURKA ↗

Location: G2/M Transition

Stable identifier: R-HSA-8854521

PHLDA1 (TDAG51), the product of a gene involved in breast cancer progression, interacts with aurora 
kinase A (AURKA). While unphosphorylated PHLDA1 promotes AURKA ubiquitination and degradation, 
AURKA-mediated phosphorylation of PHLDA1 results in down-regulation of PHLDA1 protein levels. Ec-
topic expression of PHLDA1 strongly antagonizes AURKA-triggered oncogenic phenotypes, suggesting 
PHLDA1 downregulation as one of the key mechanisms by which AURKA promotes breast cancer (Joh-
nson et al. 2011).
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