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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations 
are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many 
bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary 
literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the 
results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining 
knowledge from genomic studies, and by systems biologists building predictive models of normal and disease 
variant pathways. 
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), 
University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European 
Molecular Biology Laboratory (EBI Industry program).
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Ion influx/efflux at host-pathogen interface ↗

Stable identifier: R-HSA-6803544

Essential metal ions act as co-factors that enable enzymes to catalyse a wider range of chemical transformations than 
would be achievable using solely organic catalysts. The precise metal requirements of organisms vary between 
species, environmental niches, metabolic states and circadian rhythms.  
Metals are required cofactors for numerous processes that are essential to both pathogen and host. They are 
coordinated in enzymes responsible for DNA replication and transcription, relief from oxidative stress, and cellular 
respiration. However, excess transition metals can be toxic due to their ability to cause spontaneous redox cycling 
and disrupt normal metabolic processes. Vertebrates have evolved intricate mechanisms to limit the availability of 
some crucial metals while concurrently flooding sites of infection with antimicrobial concentrations of other metals.  
Both pathogens and hosts have complex regulatory systems for metal homeostasis. Understanding these provides 
strategies for fighting pathogens, either by excluding essential metals from the microbes, by delivery of excess 
metals to cause toxicity, or by complexing metals in microorganisms.
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NRAMP1 transports divalent metal ions across phagosomal membranes of macro-
phages ↗

Location: Ion influx/efflux at host-pathogen interface

Stable identifier: R-HSA-435171

Type: transition

Compartments: late endosome membrane, phagocytic vesicle lumen, cytosol

Natural resistance-associated macrophage proteins (NRAMPs) regulate macrophage activation for antimicrobial 
activity against intracellular pathogens. They do this by mediating bivalent metal ion transport across macrophage 
membranes and the subsequent use of these ions in the Fenton/and or Haber–Weiss reactions of free radical 
formation. 
The human gene SLC11A1 encodes NRAMP1 (Kishi F, 2004; Kishi F and Nobumoto M, 1995) which can utilize 
the protonmotive force to mediate divalent iron (Fe2+), zinc (Zn2+) and manganese (Mn2+) influx to or efflux from 
phagosomes.
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ATP7A transports cytosolic Cu2+ to phagosomal lumen ↗

Location: Ion influx/efflux at host-pathogen interface

Stable identifier: R-HSA-6803545

Type: transition

Compartments: phagocytic vesicle lumen, phagocytic vesicle membrane, cytosol

Copper is an essential cofactor of key metabolic enzymes (Linder MC & Hazegh-Azam M 1996). Under normal 
conditions, the biosynthetic incorporation of copper into secreted and plasma membrane-bound proteins requires 
activity of the copper-transporting P1B-type ATPases (Cu-ATPases), ATP7A and ATP7B (Camakaris J et al. 1999; 
La Fontaine S & Mercer JF 2007; Lutsenko S et al. 2007). The Cu-ATPases also export excess copper from the cell 
and thus critically contribute to the homeostatic control of copper (Camakaris J et al. 1999; La Fontaine S & Mercer 
JF 2007). However, during bacterial infection phagocytic cells accumulate copper Cu(I) in cytoplasmic vesicles that 
partially fuse with the phagolysosome, attacking invading microbes with toxic levels of Cu (Festa RA & Thiele DJ 
2012). The accumulation of Cu(I) in the phagosome may be dependent upon the trafficking of ATP7A to the 
membranes of these vesicles (Fu Y et al. 2014). Silencing of ATP7A expression in mouse RAW264.7 macrophages 
attenuated bacterial killing, suggesting a role for ATP7A-dependent copper transport in the bactericidal activity of 
macrophages (White C et al. 2009). Copper toxicity targets iron-sulfur containing proteins via iron displacement 
from solvent-exposed iron-sulfur clusters (Macomber L & Imlay JA 2009; Chillappagari S et al. 2010; Djoko KY & 
McEwan AG 2013). Copper resistance has been shown to be required for virulence in two animal models of 
mycobacterial infection (Wolschendorf F et al. 2011; Shi X et al. 2014).

Mutations in the gene encoding ATP7A results in a severe copper-deficiency known as Menkes disease (Kaler SG 
2011).
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