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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations 
are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many 
bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary 
literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the 
results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining 
knowledge from genomic studies, and by systems biologists building predictive models of normal and disease 
variant pathways. 
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), 
University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European 
Molecular Biology Laboratory (EBI Industry program).
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GLI:SUFU dissociates ↗

Stable identifier: R-HSA-5635859

Type: dissociation

Compartments: ciliary tip

Hh signaling promotes the dissociation of the GLI:SUFU complex in the cilium downstream of SMO activation 
(Humke et al, 2010; Tukachinsky et al, 2010). This appears to divert the transcription factors away from the partial 
processing/degradation pathway and allow the full-length forms to translocate to the nucleus where they are 
converted to labile transcriptional activators (Humke et al, 2010; Tukachinsky et al, 2010; Pan et al, 2006; Kim et al, 
2009). How the Hh signal is transmited from SMO to promote the dissociation of the GLI:SUFU complex is not 
clear, however it may involve changes in PKA activity as a result of lowered cAMP levels upon pathway 
stimulation. (Tukachinsky et al, 2010; Wen et al, 2010; Tuson et al, 2011; Barzi et al, 2010; reviewed in Briscoe and 
Therond, 2013). GPR161, which localizes to the cilium in a TULP3-dependent manner and which increases cAMP 
levels in the absence of ligand, is cleared from the cilium upon pathway activation, and deletion of GPR161 
increases Hh-dependent signaling (Mukhopadhyay et al, 2010; Mukhopadhyay et al, 2013). These data suggest that 
removal of ciliary GPR161 upon Hh stimulation may contribute to pathway activity by downregulating PKA activity 
through cAMP levels (reviewed in Mukhopadhyay and Rohatgi, 2014).
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