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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations 
are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many 
bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary 
literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the 
results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining 
knowledge from genomic studies, and by systems biologists building predictive models of normal and disease 
variant pathways. 
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), 
University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European 
Molecular Biology Laboratory (EBI Industry program).
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Ion homeostasis ↗

Stable identifier: R-HSA-5578775

Ion channels and ion homeostasis in relation to cardiac conduction is described in this section (Couette et al. 2006, 
Bartos et al. 2015).

Literature references
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SLC8A1,2,3 exchange 3Na+ for Ca2+ ↗

Location: Ion homeostasis

Stable identifier: R-HSA-425661

Type: transition

Compartments: plasma membrane, extracellular region, cytosol

The sodium/calcium exchangers 1, 2 and 3 (SCL8A1,2,3 aka NCX1,2,3) belong to one of three families that control 
Ca2+ flux across the plasma membrane or intracellular compartments. They extrude Ca2+ from the cell, using the 
electrochemical gradient of Na+ as it flows into the cell. One Ca2+ is exchanged for three Na+. During this 
electrogenic exchange, the membrane potential is altered. SLC8A1, 2, 3 play a minor role during phase 2, since they 
begin to restore ion concentrations. The high concentration of intracellular calcium starts contraction of those cells, 
which is sustained in the plateau phase. SLC8A1 has a ubiquitous expression profile (highest expression in heart, 
brain and kidney) and was originally cloned and characterized from human cardiac muscle (Komuro et al. 1992). 
Both SLC8A2) (Li et al. 1994) and SLC8A3 (Gabellini et al. 2002) are expressed in the brain. 
In Rabbits, sorcin (SRI) activates SLC8A1, via the interaction of the respective Ca2+-binding domains (Zamparelli 
et al. 2010). Calmodulin (CALM1) binds to the cytoplasmic loop of NCX1 to negatively regulate exchange activity 
(Chou et al. 2015).
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DMPK phosphorylates PLN ↗

Location: Ion homeostasis

Stable identifier: R-HSA-5578777

Type: transition

Compartments: sarcoplasmic reticulum membrane, cytosol

Force generation of the heart and calcium homeostasis are coupled in the myocardium. In the sarcoplasmic reticulum 
(SR), calcium stores provide the majority of calcium used in muscle contraction-relaxation. During relaxation, an 
ATP-dependent calcium pump (ATP2A2 aka SERCA) in the SR is essential for the recovery of calcium. The 
reuptake of calcium by ATP2A2 determines the rate of relaxation and the size of the calcium store available for 
subsequent contractions. In cardiac muscle, a second protein called phospholamban (PLN) acts as a reversible 
inhibitor of ATP2A2 and thereby modulates contractility in response to physiological factors. Defects in PLN are 
associated with lethal dilated cardiomyopathy in humans (Ceholski et al. 2012). PLN is a pentameric protein that, 
when phosphorylated, alleviates ATP2A2 inhibition and may stimulate SR calcium uptake in cardiomyocytes 
(Kaliman et al. 2005). Phosphorylation of PLN is mediated by myotonin-protein kinase (DMPK), a SR-bound 
homodimeric enzyme (Bush et al. 2000, Zhang & Epstein 2003).

Followed by: ATP2A1-3 transport Ca2+ from cytosol to ER lumen
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ATP2A1-3 transport Ca2+ from cytosol to ER lumen ↗

Location: Ion homeostasis

Stable identifier: R-HSA-427910

Type: transition

Compartments: endoplasmic reticulum membrane

Intracellular pools of Ca2+ serve as the source for inositol 1,4,5-trisphosphate (IP3) -induced alterations in 
cytoplasmic free Ca2+. In most human cells Ca2+ is stored in the lumen of the sarco/endoplastic reticulum by 
ATPases known as SERCAs (ATP2As). In platelets, ATP2As transport Ca2+ into the platelet dense tubular network. 
ATP2As are P-type ATPases, similar to the plasma membrane Na+ and Ca+-ATPases. Humans have three genes for 
SERCA pumps; ATP2A1-3. Studies on ATP2A1 suggest that it binds two Ca2+ ions from the cytoplasm and is 
subsequently phosphorylated at Asp351 before translocating Ca2+ into the SR lumen. There is a counter transport of 
two or possibly three protons ensuring partial charge balancing. Sarcolipin (SLN) can reversibly inhibit the activity 
of ATP2A1 by decreasing the apparent affinity of the ATPase for Ca2+ (Gorski et al. 2013) whereas activated 
Ca2+/CaM-dependent protein kinase II (CAMK2) and sorcin (SRI) can both stimulate ATP2A1-3 activity 
(Toyofuku et al. 1994, Matsumoto et al. 2005).

Preceded by: DMPK phosphorylates PLN
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ATP1A:ATP1B:FXYD exchanges 3Na+ for 2K+ ↗

Location: Ion homeostasis

Stable identifier: R-HSA-936897

Type: transition

Compartments: plasma membrane

The sodium/potassium-transporting ATPase (ATP1A:ATP1B:FXYD) is composed of three subunits - alpha 
(catalytic part), beta and gamma. The trimer catalyzes the hydrolysis of ATP coupled with the exchange of sodium 
and potassium ions across the plasma membrane, creating the electrochemical gradient which provides energy for the 
active transport of various nutrients. 
Four human genes encode the catalytic alpha subunits, ATP1A1-4 (Kawakami et al, 1986; Shull et al, 1989; 
Ovchinnikov et al, 1988; Keryanov and Gardner, 2002). Defects in ATP1A2 cause alternating hemiplegia of 
childhood (AHC) (Swoboda et al, 2004). Another defect in ATP1A2 causes familial hemiplegic migraine type 2 
(FHM2) (Vanmolkot et al, 2003). Defects in ATP1A3 are the cause of dystonia type 12 (DYT12) (de Carvalho 
Aguiar et al, 2004). 
 
Three human genes encode the non-catalytic beta subunits, ATP1B1-3. The beta subunits are thought to mediate the 
number of sodium pumps transported to the plasma membrane (Lane et al, 1989; Ruiz et al, 1996; Malik et al, 1996). 
FXYD proteins belong to a family of small membrane proteins that are auxiliary gamma subunits of Na-K-ATPase. 
At least six members of this family, FYD1-4, 6 and 7, have been shown to regulate Na-K-ATPase activity (Geering 
2006, Choudhury et al. 2007). Defects in FXYD2 are the cause of hypomagnesemia type 2 (HOMG2) (Meij et al, 
2000). ATP1A1-4 and ATP1B1-4 play a minor role during phase 2, since they begin to restore ion concentrations. 
The high concentration of intracellular calcium starts contraction of those cells, which is sustained in the plateau 
phase.
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ATP1A:ATP1B:FXYD binds cardiac glycosides ↗

Location: Ion homeostasis

Stable identifier: R-HSA-9684068

Type: binding

Compartments: plasma membrane, extracellular region

Cardiac glycosides are a class of organic compounds that increase the output force of the heart and increase its rate 
of contractions by inhibition of the cellular sodium-potassium ATPase pump (ATP1A1). Their beneficial medical 
uses are as treatments for congestive heart failure and cardiac arrhythmias. Cardiac glycosides are primarily derived 
from foxglove plants or from the venom of the cane toad Bufo marinus. Their toxicity prevents them from being 
widely used. Changes to heart inotropic and chronotropic activity results in multiple kinds of dysrhythmia and 
potentially fatal ventricular tachycardia. Different cardiac glycosides show different specificities towards sodium-
potassium ATPase pump alpha isoforms (Hauck et al. 2009, Katz et al. 2010, Cherniavsky et al. 2015). 
 
HIV-1 Tat is essential for HIV-1 replication. Tat must escape from the cell in order for it to activate the HIV-1 LTR 
promoter and facilitate HIV-1 viral replication. Tat utilises the cellular ATP1A1 pump for secretion out of cells. The 
cardiac glycosides ouabain, digoxin, digitoxin, acetyldigitoxin and deslanoside can all inhibit ATP1A1 (Smith 1984), 
impairing extracellular Tat release and blocking HIV-1 replication (Agostini et al. 2017).

Literature references
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CRAC translocates calcium from the extracellular region to the cytosol ↗

Location: Ion homeostasis

Stable identifier: R-HSA-434798

Type: transition

Compartments: plasma membrane

Inferred from: Calcium influx via CRAC (Drosophila melanogaster)

Activation of Calcium-release-activated (CRAC) channels allows influx of calcium. The Orai component of CRAC 
is responsible for the selectivity of the channel, while the Stim component is responsible for activation.
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RYR tetramers transport Ca2+ from sarcoplasmic reticulum lumen to cytosol ↗

Location: Ion homeostasis

Stable identifier: R-HSA-2855020

Type: transition

Compartments: sarcoplasmic reticulum membrane, cytosol, sarcoplasmic reticulum lumen

Ryanodine receptors (RYRs) are located in the sarcoplasmic reticulum (SR) membrane and mediate the release of 
Ca2+ from intracellular stores during excitation-contraction (EC) coupling in both cardiac and skeletal muscle. 
RYRs are the largest known ion channels (>2MDa) and are functional in their homotetrameric forms. There are three 
mammalian isoforms (RYR1-3); RYR1 is prominent in skeletal muscle (Zorzato et al. 1990), RYR2 in cardiac 
muscle (Tunwell et al. 1996) and RYR3 is found in the brain (Nakashima et al. 1997, Lanner et al. 2010). The 
function of RYRs are controlled by peptidyl-prolyl cis-trans isomerase (FKBP1B), intracellular Ca2+-binding 
proteins calsequestrin 1 and 2 (CASQ1 and 2) and the anchoring proteins triadin (TRDN) and junctin. Together, they 
make up the Ca2+-release complex. CASQ1 and 2 buffer intra-SR Ca2+ stores in skeletal muscle and cardiac muscle 
respectively (Fujii et al. 1990, Kim et al. 2007). When Ca2+ concentrations reach 1mM, CASQs polymerise (Kim et 
al. 2007) and can attach to one end of RYRs, mediated by anchoring proteins TRDN and junctin (Taske et al. 1995). 
By sequestering Ca2+ ions, CASQs can inhibit RYRs function (Beard et al. 2004, Beard et al. 2009a, Beard et al. 
2009b). 
 
A member of the intracellular Cl- channel protein family, CLIC2, has also been determined to inhibit RYR-mediated 
Ca2+ transport (Board et al. 2004), potentially playing a role in the homeostasis of Ca2+ release from intracellular 
stores. Inhibition is thought to be via reducing activation of the channels by their primary endogenous cytoplasmic 
ligands, ATP and Ca2+ (Dulhunty et al. 2005). Protein kinase A (PKA) phosphorylation of RYR2 dissociates 
FKBP1B and results in defective channel function (Marx et al. 2000). The penta-EF hand protein sorcin (SRI) can 
modulate Ca2+-induced calcium-release in the heart via the interaction with several Ca2+ channels such as RYRs. A 
natural ligand, F112L, impairs this modulating activity (Franceschini et al. 2008). Calmodulin (CALM1) is 
considered a gatekeeper of RYR2. CALM1 acts directly by binding to RYR2 at residues 3583–3603, inhibiting 
RYR2 both at physiological and higher, pathological Ca2+ concentrations (Smith et al. 1989, Ono et al. 2010).

Literature references
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IP3R:I(1,4,5)P3 tetramer transports Ca2+ from ER lumen to cytosol ↗

Location: Ion homeostasis

Stable identifier: R-HSA-169683

Type: transition

Compartments: endoplasmic reticulum membrane

Inferred from: Calcium release from intracellular stores by IP3 receptor activation (Rattus norvegicus)

IP3 promotes the release of intracellular calcium.
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AHCYL1:NAD+ binds ITPR1:I(1,3,5)P3 tetramer, inhibiting it ↗

Location: Ion homeostasis

Stable identifier: R-HSA-5226904

Type: binding

Compartments: endoplasmic reticulum membrane, endoplasmic reticulum lumen

Putative adenosylhomocysteinase 2 (AHCYL1 aka adenosylhomocysteine hydrolase-like protein 1) (Dekker et al. 
2002) possesses 50% homology to adenosylhomocysteine hydrolase (AHCY), an enzyme important for metabolizing 
S-adenosyl-l-homocysteine. AHCYL1 can bind to the inositol 1,4,5-trisphosphate receptor (ITPR1) tetramer, 
suggesting that AHCYL1 is involved in modulating intracellular calcium release (Cooper et al. 2006).

Literature references
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TRPC1 translocates calcium from the extracellular region to the cytosol ↗

Location: Ion homeostasis

Stable identifier: R-HSA-2089943

Type: transition

Compartments: plasma membrane, extracellular region, cytosol

TRPC1 forms a channel that transports Ca2+ across the plasma membrane. TRPC1 is gated by STIM1 (Ong et al. 
2007).
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IP3R tetramer:I(1,4,5)P3:4xCa2+ transports Ca2+ from platelet dense tubular system 
to cytosol ↗

Location: Ion homeostasis

Stable identifier: R-HSA-139854

Type: transition

Compartments: platelet dense tubular network membrane

The IP3 receptor (IP3R) is an intracellular calcium release channel that mobilizes Ca2+ from internal stores in the 
ER to the cytoplasm. Though its activity is stimulated by IP3, the principal activator of the IP3R is Ca2+. This 
process of calcium-induced calcium release is central to the mechanism of Ca2+ signalling. The effect of cytosolic 
Ca2+ on IP3R is complex: it can be both stimulatory and inhibitory and can the effect varies between IP3R isoforms. 
In general, the IP3Rs have a bell-shaped Ca2+ dependence when treated with low concentrations of IP3; low 
concentrations of Ca2+ (100–300 nM) are stimulatory but above 300 nM, Ca2+ becomes inhibitory and switches the 
channel off. The stimulatory effect of IP3 is to relieve Ca2+ inhibition of the channel, enabling Ca2+ activation sites 
to gate it.  
Functionally the IP3 receptor is believed to be tetrameric, with results indicating that the tetramer is composed of 2 
pairs of protein isoforms.
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ATP2B1-4 transport cytosolic Ca2+ to extracellular region ↗

Location: Ion homeostasis

Stable identifier: R-HSA-418309

Type: transition

Compartments: plasma membrane

The plasma membrane Ca-ATPases 1-4 (ATP2B1-4, PMCAs) are P-type Ca2+-ATPases regulated by calmodulin. 
The PMCA also counter-transports a proton. PMCA is important for Ca2+ homeostasis and function.
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Schatzmann, HJ. (1966). ATP-dependent Ca++-extrusion from human red cells. Experientia, 22, 364-5. ↗

Strehler, EE., Heim, R., Verma, AK., Filoteo, AG., Mathews, S., Fischer, R. et al. (1988). Complete primary structure 
of a human plasma membrane Ca2+ pump. J Biol Chem, 263, 14152-9. ↗

Editions
2009-06-03 Authored Akkerman, JW.

2010-06-07 Edited Jupe, S.

2010-06-07 Reviewed Kunapuli, SP.

https://reactome.org Page 18

https://reactome.org/content/detail/R-HSA-418309
http://www.ncbi.nlm.nih.gov/pubmed/5961668
http://www.ncbi.nlm.nih.gov/pubmed/2844759
https://reactome.org


ATP2B4 binds to NOS1, inhibiting it ↗

Location: Ion homeostasis

Stable identifier: R-HSA-5617178

Type: binding

Compartments: plasma membrane, cytosol

Plasma membrane calcium-transporting ATPase 4 (ATP2B4 aka PMCA4) binds and inhibits cardiac neuronal nitric-
oxide synthase (NOS1 aka nNOS, a powerful regulator of the beta-adrenergic contractile response in the heart) by 
changing local calcium concentration (Duan et al. 2013). Reduced nNOS activity leads to a reduction in cGMP 
which in turn results in the reduction of phosphodiesterase (PDE) activity. As a result, cAMP degradation is 
prevented, increasing protein kinase A (PKA) activity, which can lead to increased phosphorylation of proteins 
involved in the excitation-contraction coupling process such as cardiac phospholamban (PLN aka PLB) and of 
cardiac muscle troponin I (TNNI3 aka cTnI) (Mohamed et al. 2009).
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PRKACA phosphorylates PLN ↗

Location: Ion homeostasis

Stable identifier: R-HSA-5617182

Type: transition

Compartments: sarcoplasmic reticulum membrane, cytosol

Cardiac muscle phospholamban (PLN aka PLB) modulates cardiac contractility by inhibiting the sarcoplasmic 
reticulum calcium pump (ATP2A2 aka SERCA). This process is dynamically regulated by beta-adrenergic 
stimulation and phosphorylation of PLN. Protein kinase A (PRKACA) is able to phosphorylate PLN at serine 16, 
relieving its inhibition of ATP2A2 and modulating cardiac contractility (Glaves et al. 2011, Ceholski et al. 2012). 
The ATP2B4:NOS1 complex, via cAMP, increases PRKACA activity, thereby regulating the response of the heart to 
beta-adrenergic agonists.
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PRKACA phosphorylates TNNI3 ↗

Location: Ion homeostasis

Stable identifier: R-HSA-5617179

Type: transition

Compartments: cytosol

Human cardiac troponin I (TNNI3) is known to be phosphorylated at multiple amino acid residue sites by several 
kinases. Protein kinase A (PRKACA) can phosphorylate serine 23 and 24 sites on TNNI3. Phosphorylation of 
TNNI3 reduces myofilament calcium sensitivity (Mittmann et al. 1990, Keane et al. 1997, Zhang et al. 2012). 
Defects in TNNI3 can cause a range of cardiomyopathies (Lu et al. 2013). The ATP2B4:NOS1 complex, via cAMP, 
increases PRKACA activity, thereby regulating the response of the heart to beta-adrenergic agonists.
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KCNJ11:ABCC9 transports K+ from extracellular region to cytosol ↗

Location: Ion homeostasis

Stable identifier: R-HSA-5678261

Type: transition

Compartments: plasma membrane, extracellular region, cytosol

ATP-sensitive inward rectifier potassium channel 11 (KCNJ11) is an inward rectifier potassium channel, favouring 
potassium flow into the cell rather than out of it. KCNJ11 can complex with ATP-binding cassette sub-family 
member 9 (ABCC9) to form cardiac and smooth muscle-type K+(ATP) channels. KCNJ11 forms the channel pore 
while ABCC9 is required for activation and regulation (Babenko et al. 1998, Tammaro & Ashcroft 2007).
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KCNJ11:ABCC9 binds nicorandil ↗

Location: Ion homeostasis

Stable identifier: R-HSA-9691566

Type: binding

Compartments: plasma membrane, extracellular region

Nicorandil, a nicotinamide derivative, is an oral antianginal drug possessing a nitrate moiety in its structure. This 
drug is an effective and well-tolerated treatment for various types of angina pectoris. Its structure is characterised by 
a dual mechanism of action. The nicotinamide moiety acts as an agonist for ATP-sensitive inward rectifier potassium 
channel 11 (KCNJ11, in complex with its regulatory subunit ABCC9) (Hambrock et al. 1999) and the nitrate group 
explains its nitrate-like properties (Kinoshita & Sakai 1990, Ahmed 2019).
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