

LIN28 binds POU5F1 (OCT4) mRNA

May, B., Wang, J.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of <u>Creative Commons Attribution 4.0 International (CC BY 4.0)</u> <u>License</u>. For more information see our <u>license</u>.

06/05/2024

Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

- Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. *BMC bioinformatics, 18,* 142. 7
- Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. et al. (2017). Reactome enhanced pathway visualization. *Bioinformatics*, 33, 3461-3467. A
- Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P. et al. (2018). The Reactome Pathway Knowledgebase. *Nucleic Acids Res, 46*, D649-D655. ↗
- Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P. et al. (2018). Reactome graph database: Efficient access to complex pathway data. *PLoS computational biology*, *14*, e1005968. *オ*


This document contains 1 reaction (see Table of Contents)

LIN28 binds POU5F1 (OCT4) mRNA 7

Stable identifier: R-HSA-500366

Type: binding

Compartments: cytosol

LIN28 binds the R2 region of the POU5F1 (OCT4) mRNA and increases translation of a luciferase reporter mRNA containing the binding site (Qiu et al. 2009, Lei et al. 2012). Reduction of LIN28 levels in embryonic stem cells causes a reduction in POU5F1 protein (Qiu et al. 2009).

Literature references

- Peng, S., Huang, Y., Qiu, C., Wang, J., Ma, Y. (2009). Lin28-mediated post-transcriptional regulation of Oct4 expression in human embryonic stem cells. *Nucleic Acids Res*, 38, 1240-8. *¬*
- Qiao, C., Lei, XX., Hammond, SM., Huang, Y., Newman, MA., Ma, W. et al. (2012). Determinants of mRNA recognition and translation regulation by Lin28. *Nucleic Acids Res., 40*, 3574-84.

Editions

2010-11-12	Authored, Edited	May, B.
2014-01-23	Reviewed	Wang, J.