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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations 
are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many 
bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary 
literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the 
results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining 
knowledge from genomic studies, and by systems biologists building predictive models of normal and disease 
variant pathways. 
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), 
University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European 
Molecular Biology Laboratory (EBI Industry program).
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Autophosphorylation of PDGF alpha receptors ↗

Stable identifier: R-HSA-389083

Type: transition

Compartments: cytosol, plasma membrane

Receptor dimerisation is key event in PDGF receptor activation. The intracellular regions of the receptors are 
juxtaposed which allows trans-phosphorylation between the two receptors in the complex. 
The autophosphorylation site Y857 located inside the kinase domain of beta-receptor (PDGFRB) is important for 
activation of the kinase. This tyrosine is conserved in the alpha-receptor (PDGFRA), where it corresponsds to Y849, 
and in almost all other tyrosine kinase receptors. The other known autophosphorylation sites are localized outside the 
kinase domains of the alpha- and beta- receptors; of the 15( beta) or 16 (alpha) tyrosine residues in the intracellular, 
non-catalytic part of the beta- or alpha receptor, 11 and 10, respectively, are autophosphorylation sites (reviewed in 
Heldin et al, 1998). 
PDGFRA and PDGFRB activity can be inhibited by binding to type I and type II tyrosine kinase inhibitors (reviewed 
in Roskoski, 2018). Type I inhibitors such as crenolanib, avripatinib and pazopanib, bind to the active conformation 
of the receptor and inhibit trans-autophosphorylation (Ip et al, 2018; Evans et al, 2017; Davids et al, 2009; reviewed 
in Roskoski, 2018; Klug et al, 2018; Papadopoulos and Lennartsson, 2016). 
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