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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations 
are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many 
bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary 
literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the 
results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining 
knowledge from genomic studies, and by systems biologists building predictive models of normal and disease 
variant pathways. 
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), 
University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European 
Molecular Biology Laboratory (EBI Industry program).
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Phosphorylation of beta and gamma subunits by LYN ↗

Stable identifier: R-HSA-2454208

Type: transition

Compartments: plasma membrane, cytosol

Upon FCGRI-IgE aggregation, LYN kinase phosphorylates the tyrosine residues within the ITAM (immunoreceptor 
tyrosine-based activation motifs) of both the beta and gamma subunits. The detailed mechanism of the initial 
engagement of LYN kinase and FCERI is incompletely understood, but two different models have been proposed. 
One model postulates that a small fraction of LYN is constitutively bound to beta subunit of FCERI prior to 
activation. Aggregation of FCERI facilitates the transphosphorylation of one FCERI by LYN bound to a juxtaposed 
receptor (Vonakis et al. 1997, Draber & Draberova 2002). Alternative model postulates that LYN is observed in lipid 
rafts enriched in glycosphingolipids, cholesterol, and glycosylphosphatidylinositol-anchored proteins and upon 
aggregation, FCERI rapidly translocates into lipid rafts, where it is phosphorylated by LYN kinase. Either the 
association of LYN or FCERI or both with lipid rafts is important for initiating this phosphorylation process (Young 
et al. 2003, Kovarova et al. 2002, Draber & Draberova 2002). 
Beta subunit ITAM differs from canonical ITAMs in two ways; the spacing between the two canonical tyrosines 
harbours a third tyrosine, and it is one amino acid shorter than in canonical ITAMs, thus making it unfit to bind and 
recruit Syk. Among the three tyrosine residues (Y219, Y225 and Y229), Y219 may play a predominant role in beta 
chain function and LYN recruitment. Mutation of this tyrosine would decrease substantially LYN association and 
subsequent phosphorylation of Y225 and Y229. This would result in decreased gamma phosphorylation and 
decreased SYK recruitment and activation (On et al. 2004).
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