

NOTCH2 binds CNTN1

Boyle, S., Haw, R., Ilagan, MXG., Orlic-Milacic, M.

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of CC BY 4.0)
<u>License.</u> For more information see our License.

16/05/2024

https://reactome.org

Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

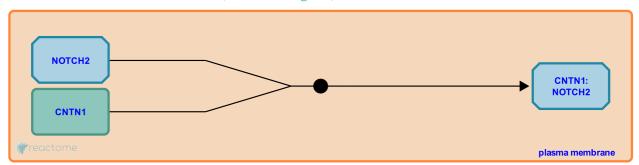
Literature references

- Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. *BMC bioinformatics*, 18, 142.
- Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. et al. (2017). Reactome enhanced pathway visualization. *Bioinformatics*, 33, 3461-3467.
- Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P. et al. (2018). The Reactome Pathway Knowledgebase. *Nucleic Acids Res, 46*, D649-D655.
- Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P. et al. (2018). Reactome graph data-base: Efficient access to complex pathway data. *PLoS computational biology, 14*, e1005968.

Reactome database release: 88

This document contains 1 reaction (see Table of Contents)

https://reactome.org Page 2


NOTCH2 binds CNTN1

Stable identifier: R-HSA-2220816

Type: binding

Compartments: plasma membrane

Inferred from: Notch2 binds Cntn1 (Rattus norvegicus)

CNTN1 (F3, contactin-1) is a neuronal cell adhesion protein that can bind and activate NOTCH2, as well as NOTCH1, and these interactions are thought to play a role in oligodendrocyte maturation. While NOTCH1 activation by CNTN1 was shown to be deltex-dependent, the involvement of deltex in CNTN1-mediated activation of NOTCH2, although likely, has not been examined (Hu et al. 2003).

Literature references

Small, D., Cui, XY., Ling, EA., Hirai, H., Pallen, CJ., Okano, H. et al. (2003). F3/contactin acts as a functional ligand for Notch during oligodendrocyte maturation. *Cell*, 115, 163-75.

Editions

2013-01-11	Authored	Orlic-Milacic, M.
2013-01-14	Edited	Haw, R.
2013-04-25	Reviewed	Ilagan, MXG., Boyle, S.