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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations 
are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many 
bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary 
literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the 
results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining 
knowledge from genomic studies, and by systems biologists building predictive models of normal and disease 
variant pathways. 
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), 
University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European 
Molecular Biology Laboratory (EBI Industry program).
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PTEN dephosphorylates PIP3 ↗

Stable identifier: R-HSA-199456

Type: transition

Compartments: cytosol, plasma membrane

At the plasma membrane, phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase and dual-specificity protein 
phosphatase aka phosphatase and tensin homolog (PTEN) dephosphorylates phosphatidylinositol 3,4,5-trisphosphate 
(PI(3,4,5)P3) to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) (Maehama & Dixon 1998, Myers et al. 1998, Das 
et al. 2003). The PI3K network is negatively regulated by phospholipid phosphatases that dephosphorylate PIP3, thus 
hampering AKT activation (Myers et al. 1998). The tumour suppressor PTEN is the primary phospholipid 
phosphatase. 
Early studies indicated that magnesium ion, Mg2+, was needed for the catalytic activity of PTEN isolated from 
bovine thymus (Kabuyama et al. 1996). Subsequent studies have shown that PTEN was catalytically active in buffers 
free of magnesium and magnesium was not detected as part of the PTEN crystal (Lee et al. 1999).
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