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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway 
annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-
referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions 
are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics research-
ers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioin-
formaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by 
systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 
HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and 
the European Molecular Biology Laboratory (EBI Industry program).
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Negative regulation of the PI3K/AKT network ↗

Stable identifier: R-HSA-199418

The PI3K/AKT network is negatively regulated by phosphatases that dephosphorylate PIP3, thus hamper-
ing AKT activation.
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PTEN dephosphorylates PIP3 ↗

Location: Negative regulation of the PI3K/AKT network

Stable identifier: R-HSA-199456

Type: transition

Compartments: cytosol, plasma membrane

At the plasma membrane, phosphatidylinositol-3,4,5-trisphosphate 3-phosphatase and dual-specificity 
protein phosphatase aka phosphatase and tensin homolog (PTEN) dephosphorylates phosphatidylinosit-
ol 3,4,5-trisphosphate (PI(3,4,5)P3) to phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) (Maehama & Dix-
on 1998, Myers et al. 1998, Das et al. 2003). The PI3K network is negatively regulated by phospholipid 
phosphatases that dephosphorylate PIP3, thus hampering AKT activation (Myers et al. 1998). The tumour 
suppressor PTEN is the primary phospholipid phosphatase.

Early studies indicated that magnesium ion, Mg2+, was needed for the catalytic activity of PTEN isolated 
from bovine thymus (Kabuyama et al. 1996). Subsequent studies have shown that PTEN was catalytically 
active in buffers free of magnesium and magnesium was not detected as part of the PTEN crystal (Lee et 
al. 1999). 
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THEM4 (CTMP) and/or TRIB3 inhibit AKT phosphorylation ↗

Location: Negative regulation of the PI3K/AKT network

Stable identifier: R-HSA-199443

Type: binding

Compartments: plasma membrane

The phosphorylation of membrane-recruited AKT at threonine and serine can be inhibited by direct 
binding of two different proteins, C-terminal modulator protein (THEM4 i.e. CTMP), which binds to the 
carboxy-terminal tail of AKT (Maira et al. 2001), or Tribbles homolog 3 (TRIB3), which binds to the cata-
lytic domain of AKT (Du et al. 2003).
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PHLPP dephosphorylates S473 in AKT ↗

Location: Negative regulation of the PI3K/AKT network

Stable identifier: R-HSA-199425

Type: transition

Compartments: cytosol

The PH domain leucine-rich repeat-containing protein phosphatases, PHLPP1 (Gao et al. 2005) and 
PHLPP2 (Brognard et al. 2007) can specifically dephosphorylate the serine residue and inactivate AKT.
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PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling ↗

Location: Negative regulation of the PI3K/AKT network

Stable identifier: R-HSA-6811558

Phosphatidylinositol-5-phosphate (PI5P) may modulate PI3K/AKT signaling in several ways. PI5P is used 
as a substrate for production of phosphatidylinositol-4,5-bisphosphate, PI(4,5)P2 (Rameh et al. 1997, 
Clarke et al. 2008, Clarke et al. 2010, Clarke and Irvine 2013, Clarke et al. 2015), which serves as a sub-
strate for activated PI3K, resulting in the production of PIP3 (Mandelker et al. 2009, Burke et al. 2011). 
The majority of PI(4,5)P2 in the cell, however, is produced from the phosphatidylinositol-4-phosphate 
(PI4P) substrate (Zhang et al. 1997, Di Paolo et al. 2002, Oude Weernink et al. 2004, Halstead et al. 2006, 
Oude Weernink et al. 2007). PIP3 is necessary for the activating phosphorylation of AKT. AKT1 can be de-
activated by the protein phosphatase 2A (PP2A) complex that contains a regulatory subunit B56-beta 
(PPP2R5B) or B56-gamma (PPP2R5C). PI5P inhibits AKT1 dephosphorylation by PP2A through an un-
known mechanism (Ramel et al. 2009). Increased PI5P levels correlate with inhibitory phosphorylation(s) 
of the PP2A complex. MAPK1 (ERK2) and MAPK3 (ERK1) are involved in inhibitory phosphorylation of 
PP2A, in a process that involves IER3 (IEX-1) (Letourneux et al. 2006, Rocher et al. 2007). It is uncertain, 
however, whether PI5P is in any way involved in ERK-mediated phosphorylation of PP2A or if it regulates 
another PP2A kinase.
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