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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations 
are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many 
bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary 
literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the 
results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining 
knowledge from genomic studies, and by systems biologists building predictive models of normal and disease 
variant pathways. 
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), 
University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European 
Molecular Biology Laboratory (EBI Industry program).
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AKT phosphorylates targets in the cytosol ↗

Stable identifier: R-HSA-198323

Compartments: cytosol

Following activation, AKT can phosphorylate an array of target proteins in the cytoplasm, many of which are 
involved in cell survival control. Phosphorylation of TSC2 feeds positively to the TOR kinase, which, in turn, 
contributes to AKT activation (positive feedback loop).
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AKT phosphorylates BAD ↗

Location: AKT phosphorylates targets in the cytosol

Stable identifier: R-HSA-198347

Type: transition

Compartments: cytosol

Inferred from: AKT phosphorylates Bad (Homo sapiens)

Activated AKT phosphorylates the BCL-2 family member BAD at serine 99 (corresponds to serine residue S136 of 
mouse Bad), blocking the BAD-induced cell death (Datta et al. 1997, del Peso et al. 1997, Khor et al. 2004).
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AKT phosphorylates GSK3 ↗

Location: AKT phosphorylates targets in the cytosol

Stable identifier: R-HSA-198371

Type: transition

Compartments: cytosol

Inferred from: Akt1 phosphorylates GSK3 (Rattus norvegicus)

GSK3 (glycogen synthase kinase-3) participates in the Wnt signaling pathway. It is implicated in the hormonal 
control of several regulatory proteins including glycogen synthase, and the transcription factors MYB and JUN. 
GSK3 phosphorylates JUN at sites proximal to its DNA-binding domain, thereby reducing its affinity for DNA. 
GSK3 is inhibited when phosphorylated by AKT1.
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AKT phosphorylates caspase-9 ↗

Location: AKT phosphorylates targets in the cytosol

Stable identifier: R-HSA-198621

Type: transition

Compartments: cytosol

AKT can phosphorylate the apoptotic protease caspase-9, inhibiting it.
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AKT phosphorylates MDM2 ↗

Location: AKT phosphorylates targets in the cytosol

Stable identifier: R-HSA-198599

Type: transition

Compartments: cytosol

AKT phosphorylates MDM2 on two serine residues, at positions 166 and 188 (Mayo and Donner 2001, Feng et al. 
2004, Milne et al. 2004). AKT-mediated phosphorylation of the E3 ubiquitin-protein ligase MDM2 promotes nuclear 
localization and interferes with the interaction between MDM2 and p14-ARF, thereby decreasing p53 stability. This 
leads to a decreased expression of p53 target genes, such as BAX, that promote apoptosis (Zhou et al. 2001, Mayo 
and Donner 2001).
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AKT phosphorylates IKKalpha ↗

Location: AKT phosphorylates targets in the cytosol

Stable identifier: R-HSA-198611

Type: transition

Compartments: cytosol

AKT mediates IKKalpha (Inhibitor of nuclear factor kappa B kinase subunit alpha) phosphorylation at threonine 23, 
which is required for NF-kB activation. NF-kB promoted gene transcription enhances neuronal survival.
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AKT phosphorylates p21Cip1 and p27Kip1 ↗

Location: AKT phosphorylates targets in the cytosol

Stable identifier: R-HSA-198613

Type: transition

Compartments: cytosol

Phosphorylation of p27Kip1 at T157 and of p21Cip1 at T145 by AKT leads to their retention in the cytoplasm, 
segregating these cyclin-dependent kinase (CDK) inhibitors from cyclin-CDK complexes.
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AKT phosphorylates TSC2, inhibiting it ↗

Location: AKT phosphorylates targets in the cytosol

Stable identifier: R-HSA-198609

Type: transition

Compartments: cytosol

AKT phosphorylates and inhibits TSC2 (tuberin), a suppressor of the TOR kinase pathway, which senses nutrient 
levels in the environment. TSC2 forms a protein complex with TSC1 and this complex acts as a GAP (GTPase 
activating protein) for the RHEB G-protein. RHEB, in turn, activates the TOR kinase. Thus, an active AKT1 
activates the TOR kinase, both of which are positive signals for cell growth (an increase in cell mass) and division. 
The TOR kinase regulates two major processes: translation of selected mRNAs in the cell and autophagy. In the 
presence of high nutrient levels TOR is active and phosphorylates the 4EBP protein releasing the eukaryotic 
initiation factor 4E (eIF4E), which is essential for cap-dependent initiation of translation and promoting growth of 
the cell (PMID: 15314020). TOR also phosphorylates the S6 kinase, which is implicated in ribosome biogenesis as 
well as in the modification of the S6 ribosomal protein. AKT can also activate mTOR by another mechanism, 
involving phosphorylation of PRAS40, an inhibitor of mTOR activity.
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AKT phosphorylates AKT1S1 (PRAS40) ↗

Location: AKT phosphorylates targets in the cytosol

Stable identifier: R-HSA-200143

Type: transition

Compartments: cytosol

PRAS40 (proline-rich Akt/PKB substrate 40 kDa) is a substrate of AKT, the phosphorylation of which leads to the 
binding of this protein to 14-3-3. PRAS40 binds to mTOR complexes, mediating AKT signals to mTOR. Interaction 
of PRAS40 with the mTOR kinase domain is induced under conditions that inhibit mTOR signalling, such as growth 
factor deprivation. Binding of PRAS40 inhibits mTOR. PRAS40 phosphorylation by AKT and association with the 
cytosolic anchor protein 14-3-3, lead to mTOR stimulation (Vander Haar E, et al, 2007). Although it was originally 
identified in the context of insulin signalling, it was later shown that PRAS40 may also play a role in nerve growth 
factor-mediated neuroprotection (Saito A, et al, 2004).
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AKT phosphorylates MKRN1 ↗

Location: AKT phosphorylates targets in the cytosol

Stable identifier: R-HSA-8948757

Type: transition

Compartments: cytosol

AKT1 (and possibly AKT2 and AKT3), activated in response to EGF treatment, phosphorylates MKRN1, an E3 
ubiquitin ligase, on serine residue S109. AKT-mediated phosphorylation results in stabilization of MKRN1, 
protecting it from ubiquitination and proteasome-mediated degradation (Lee et al. 2015).
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