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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway 
annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-
referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions 
are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics research-
ers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioin-
formaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by 
systems biologists building predictive models of normal and disease variant pathways.

The development of Reactome is supported by grants from the US National Institutes of Health (P41 
HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and 
the European Molecular Biology Laboratory (EBI Industry program).
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Metabolism of nucleotides ↗

Stable identifier: R-HSA-15869

Nucleotides and their derivatives are used for short-term energy storage (ATP, GTP), for intra- and extra-
cellular signaling (cAMP; adenosine), as enzyme cofactors (NAD, FAD), and for the synthesis of DNA and 
RNA. Most dietary nucleotides are consumed by gut flora; the human body's own supply of these mo-
lecules is synthesized de novo. Additional metabolic pathways allow the interconversion of nucleotides, 
the salvage and reutilization of nucleotides released by degradation of DNA and RNA, the catabolism of 
excess nucleotides, and the transport of these molecules between the cytosol and the nucleus (Rudolph 
1994). These pathways are regulated to control the total size of the intracellular nucleotide pool, to bal-
ance the relative amounts of individual nucleotides, and to couple the synthesis of deoxyribonucleotides 
to the onset of DNA replication (S phase of the cell cycle).

These pathways are also of major clinical interest as they are the means by which nucleotide analogues 
used as anti-viral and anti-tumor drugs are taken up by cells, activated, and catabolized (Weilin and 
Nordlund 2010). As well, differences in nucleotide metabolic pathways between humans and aplicompl-
exan parasites like Plasmodium have been exploited to design drugs to attack the latter (Hyde 2007).

The movement of nucleotides and purine and pyrimidine bases across lipid bilayer membranes, medi-
ated by SLC transporters, is annotated as part of the module "transmembrane transport of small mo-
lecules".

Literature references
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Nucleobase biosynthesis ↗

Location: Metabolism of nucleotides

Stable identifier: R-HSA-8956320

The purine ribonucleotide inosine 5'-monophosphate (IMP) is assembled on 5-phospho-alpha-D-ribose 1-
diphosphate (PRPP), with atoms derived from aspartate, glutamine, glycine, N10-formyl-tetrahydro-
folate, and carbon dioxide.  Although several of the individual reactions in this sequence are reversible, 
as indicated by the double-headed arrows in the diagram, other irreversible steps drive the pathway in 
the direction of IMP synthesis in the normal cell.  All of these reactions are thus annotated here only in 
the direction of IMP synthesis.  Guanosine 5'-monophosphate (GMP) and adenosine 5'-monophosphate 
(AMP) are synthesized from IMP (Zalkin & Dixon 1992).

The pyrimidine orotate (orotic acid) is synthesized in a sequence of four reactions, deriving its atoms 
from glutamine, bicarbonate, and aspartate. A single multifunctional cytosolic enzyme catalyzes the first 
three of these reactions, while the last one is catalyzed by an enzyme associated with the inner mitochon-
drial membrane. In two further reactions, catalyzed by a bifunctional cytosolic enzyme, orotate reacts 
with 1-phosphoribosyl 5-pyrophosphate (PRPP) to yield orotidine 5'-monophosphate, which is de-
carboxylated to yield uridine 5'-monophosphate (UMP). While several individual reactions in this path-
way are reversible, other irreversible reactions drive the pathway in the direction of UMP biosynthesis in 
the normal cell. All reactions are thus annotated here only in the forward direction.

This pathway has been most extensively analyzed at the genetic and biochemical level in hamster cell 
lines. All three enzymes have also been purified from human sources, however, and the key features of 
these reactions have been confirmed from studies of this human material (Jones 1980).

All other pyrimidines are synthesized from UMP. The reactions annotated here, catalyzed by dCMP 
deaminase and dUTP diphosphatase yield dUMP, which in turn is converted to TMP by thymidylate syn-
thase.

Literature references
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Interconversion of nucleotide di- and triphosphates ↗

Location: Metabolism of nucleotides

Stable identifier: R-HSA-499943

Compartments: cytosol, mitochondrial intermembrane space, nucleoplasm, mitochondrial inner mem-
brane, mitochondrial matrix

An array of kinases catalyze the reversible phosphorylation of nucleotide monophosphates to form nuc-
leotide diphosphates and triphosphates.

Nucleoside monophosphate kinases catalyze the reversible phosphorylation of nucleoside and deoxynuc-
leoside 5'-monophosphates to form the corresponding nucleoside 5'-diphosphates.  Most appear to have 
restricted specificities for nucleoside monophosphates, and to use ATP preferentially (Van Rompay et al. 
2000; Anderson 1973; Noda 1973).  The total number of human enzymes that catalyze these reactions in 
vivo is not clear.  In six cases, a well-defined biochemical activity has been associated with a purified pro-
tein, and these are annotated here.  However, additional nucleoside monophosphate kinase-like human 
proteins have been identified in molecular cloning studies whose enzymatic activities are unknown, and 
several distinctive nucleoside monophosphate kinase activities detected in cell extracts, e.g., a GTP-re-
quiring adenylate kinase activity (Wilson et al. 1976) and one or more guanylate kinase activities (Jamil et 
al. 1975) have not been unambiguously associated with specific human proteins.

The nucleoside monophosphates against which each of the six well-characterized enzymes is active is 
shown in the table (Van Rompay et al. 2000).  All six efficiently use ATP as a phosphate donor, but have 
some activity with other nucleoside triphosphates as well in vitro.  The high concentrations of ATP relat-
ive to other nucleoside triphosphates in vivo makes it the likely major phosphate donor in these reactions 
under most conditions.

All of these phosphorylation reactions are freely reversible in vitro when carried out with purified en-
zymes and substrates, having equilibrium constants near 1.  In vivo, high ratios of ATP to ADP are likely 
to favor the forward direction of these reactions, i.e., the conversion of (d)NMP and ATP to (d)NDP and 
ADP.  At the same time, the reversibility of the reactions and the overlapping substrate specificities of the 
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enzymes raises the possibility that this group of reactions can buffer the intracellular nucleotide pool and 
regulate the relative concentrations of individual nucleotides in the pool: if any one molecule builds up 
to unusually high levels, multiple routes appear to be open not only to dispose of it but to use it to in-
crease the supply of less abundant nucleotides.

Ribonucleotide reductase catalyzes the synthesis of deoxyribonucleotide diphosphates from ribonuc-
leotide diphosphates.
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Nucleotide salvage ↗

Location: Metabolism of nucleotides

Stable identifier: R-HSA-8956321

Nucleosides and free bases generated by RNA and DNA breakdown are converted back to nucleotide 
monophosphates, allowing them to re-enter the pathways of nucleotide biosynthesis and interconver-
sion. Under normal conditions, DNA turnover is limited and deoxyribonucleotide salvage operates at a 
correspondingly low level (Watts 1974).

Literature references
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Nucleobase catabolism ↗

Location: Metabolism of nucleotides

Stable identifier: R-HSA-8956319

The purine bases guanine and hypoxanthine (derived from adenine by events in the purine salvage path-
ways) are converted to xanthine and then to uric acid, which is excreted from the body (Watts 1974). The 
end-point of this pathway in humans and hominoid primates is unusual. Most other mammals metabol-
ize uric acid further to yield more soluble end products, and much speculation has centered on possible 
roles for high uric acid levels in normal human physiology.

In parallel sequences of three reactions each, the pyrimidines thymine and uracil are converted to beta-
aminoisobutyrate and beta-alanine respectively. Both of these molecules are excreted in human urine 
and appear to be normal end products of pyrimidine catabolism (Griffith 1986). Mitochondrial AGXT2, 
however, can also catalyze the transamination of both molecules with pyruvate, yielding 2-oxoacids that 
can be metabolized further by reactions of branched-chain amino acid and short-chain fatty acid catabol-
ism (Tamaki et al. 2000).

Hydrolysis of phosphate bonds in nucleotides catalyzed by members of the NUDT and NTPD families of 
enzymes have been grouped here as well, although the physiological roles of these groups of  catabolic 
reactions are diverse.
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