Heme signaling

European Bioinformatics Institute, New York University Langone Medical Center, Ontario Institute for Cancer Research, Oregon Health and Science University.

The contents of this document may be freely copied and distributed in any media, provided the authors, plus the institutions, are credited, as stated under the terms of Creative Commons Attribution 4.0 International (CC BY 4.0) License. For more information see our license.

This is just an excerpt of a full-length report for this pathway. To access the complete report, please download it at the Reactome Textbook.

Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining knowledge from genomic studies, and by systems biologists building predictive models of normal and disease variant pathways.
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European Molecular Biology Laboratory (EBI Industry program).

Literature references

Fabregat, A., Sidiropoulos, K., Viteri, G., Forner, O., Marin-Garcia, P., Arnau, V. et al. (2017). Reactome pathway analysis: a high-performance in-memory approach. BMC bioinformatics, 18, 142. л

Sidiropoulos, K., Viteri, G., Sevilla, C., Jupe, S., Webber, M., Orlic-Milacic, M. et al. (2017). Reactome enhanced pathway visualization. Bioinformatics, 33, 3461-3467. 才

Fabregat, A., Jupe, S., Matthews, L., Sidiropoulos, K., Gillespie, M., Garapati, P. et al. (2018). The Reactome Pathway Knowledgebase. Nucleic Acids Res, 46, D649-D655. 7

Fabregat, A., Korninger, F., Viteri, G., Sidiropoulos, K., Marin-Garcia, P., Ping, P. et al. (2018). Reactome graph database: Efficient access to complex pathway data. PLoS computational biology, 14, e1005968. 7

Heme signaling λ

Stable identifier: R-DRE-9707616
Compartments: cytosol, extracellular region, nuclear envelope, nucleoplasm, plasma membrane
Inferred from: Heme signaling (Homo sapiens)

This event has been computationally inferred from an event that has been demonstrated in another species.
The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.

More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp

H2O2 oxidises ferrohemoglobin to MetHb \nearrow

Location: Heme signaling
Stable identifier: R-DRE-9707504
Type: dissociation
Compartments: extracellular region
Inferred from: H 2 O 2 oxidises ferrohemoglobin to MetHb (Homo sapiens)

This event has been computationally inferred from an event that has been demonstrated in another species.
The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.

More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp

Followed by: FeHM dissociates from MetHb

FeHM dissociates from MetHb \nearrow

Location: Heme signaling
Stable identifier: R-DRE-9707516

Type: dissociation
Compartments: extracellular region
Inferred from: FeHM dissociates from MetHb (Homo sapiens)

This event has been computationally inferred from an event that has been demonstrated in another species.
The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75\% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.

More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp

Preceded by: H 2 O 2 oxidises ferrohemoglobin to MetHb

SLC46A1 transports hemes from extracellular region to cytosol π

Location: Heme signaling
Stable identifier: R-DRE-917870
Type: transition
Compartments: plasma membrane
Inferred from: SLC46A1 transports hemes from extracellular region to cytosol (Homo sapiens)

This event has been computationally inferred from an event that has been demonstrated in another species.
The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.

More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp

PGRMC2 binds Hemes

Location: Heme signaling
Stable identifier: R-DRE-9707683

Type: binding
Compartments: nuclear envelope, cytosol
Inferred from: PGRMC2 binds Hemes (Homo sapiens)

This event has been computationally inferred from an event that has been demonstrated in another species.
The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.

More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp

Followed by: PGRMC2:Hemes translocate to the nucleus

PGRMC2:Hemes translocate to the nucleus λ

Location: Heme signaling
Stable identifier: R-DRE-9707606
Type: omitted
Compartments: nuclear envelope, nucleoplasm
Inferred from: PGRMC2:Hemes translocate to the nucleus (Homo sapiens)

This event has been computationally inferred from an event that has been demonstrated in another species.
The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.

More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp

Preceded by: PGRMC2 binds Hemes
Followed by: PGRMC2:Hemes dissociates

PGRMC2:Hemes dissociates \nearrow

Location: Heme signaling
Stable identifier: R-DRE-9707856
Type: omitted
Compartments: nucleoplasm
Inferred from: PGRMC2:Hemes dissociates (Homo sapiens)

This event has been computationally inferred from an event that has been demonstrated in another species.
The inference is based on the homology mapping from PANTHER. Briefly, reactions for which all involved PhysicalEntities (in input, output and catalyst) have a mapped orthologue/paralogue (for complexes at least 75% of components must have a mapping) are inferred to the other species. High level events are also inferred for these events to allow for easier navigation.

More details and caveats of the event inference in Reactome. For details on PANTHER see also: http://www.pantherdb.org/about.jsp

Preceded by: PGRMC2:Hemes translocate to the nucleus

Table of Contents

Introduction 1
Heme signaling 2
H2O2 oxidises ferrohemoglobin to MetHb 3
Foh FeHM dissociates from MetHb 4
T> SLC46A1 transports hemes from extracellular region to cytosol 5
\% PGRMC2 binds Hemes 6
$1+\mathbf{r}$ PGRMC2:Hemes translocate to the nucleus 7
$1 \rightarrow \mathbf{1}$ PGRMC2:Hemes dissociates 8
Table of Contents 9

