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Introduction

Reactome is open-source, open access, manually curated and peer-reviewed pathway database. Pathway annotations 
are authored by expert biologists, in collaboration with Reactome editorial staff and cross-referenced to many 
bioinformatics databases. A system of evidence tracking ensures that all assertions are backed up by the primary 
literature. Reactome is used by clinicians, geneticists, genomics researchers, and molecular biologists to interpret the 
results of high-throughput experimental studies, by bioinformaticians seeking to develop novel algorithms for mining 
knowledge from genomic studies, and by systems biologists building predictive models of normal and disease 
variant pathways. 
The development of Reactome is supported by grants from the US National Institutes of Health (P41 HG003751), 
University of Toronto (CFREF Medicine by Design), European Union (EU STRP, EMI-CD), and the European 
Molecular Biology Laboratory (EBI Industry program).
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JAK/STAT pathway ↗

Stable identifier: R-DME-209405

The JAK/STAT pathway is one of the main eukaryotic signalling pathways. In vertebrates, there are several ligands, 
receptors, JAK kinases and STAT molecules making detailed study of the system very complex. In Drosophila, the 
JAK/STAT pathway is much less redundant, offering one set of related ligands UPD (OS, UPD2, UPD3), a receptor 
Domeless (DOME), a Janus Associated Kinase Hopscotch (HOP), and a STAT transcription factor (STAT92E). 
 
The DOME receptor, like many cytokine receptors, contains no tyrosine kinase domain. However, it is constitutively 
associated with the kinase HOP. The DOME receptor dimerises at the plasma membrane whereupon it binds a UPD 
ligand. This activates the receptor-associated HOP which are now able to phosphorylate each other and also the 
cytoplasmic tail of the DOME receptor. This creates a docking site for monomeric cytoplasmic STAT92E proteins 
which can bind via their SH2 domains. Once bound to the receptor complex, STAT92E is itself phosphorylated. It 
dissociates from the receptor complex and dimerises, the interaction stabilised by the SH2 domain of one molecule 
binding to the phospho-Tyr of the other. The dimer translocates to the nucleus where it binds to a palindromic DNA 
sequence in the pathway target gene promoters to activate transcription. 
 
There are also negative regulators present in this pathway. Some are present in the nucleus and, in the case of 
SU(VAR)2-10 which is a Drosophila PIAS or Zimp protein, act by binding to STAT92E dimer. Others, such as the 
BCL6 orthologue, Ken and Barbie (KEN), bind to DNA sequences on target genes which overlap with STAT92E 
binding sites. There is a protein tyrosine phosphatase, PTP61F, that exists in two differently spliced forms. One is 
active in the cytosol and dephosphorylates HOP and STAT92E while the other dephosphorylates STAT92E in the 
nucleus. 
 
A truncated version of STAT92E, deltaNSTAT92E, that lacks the N-terminal 133 amino acids has also been found. 
It is believed this truncated STAT forms homodimers and heterodimers with full-length STAT92E. Increasing the 
deltaNSTAT92E to STAT92E ratio in overexpression and RNAi experiments results in the repression of target gene 
transcription. This may be due to the truncated protein failing to attract coactivators or failing to form tetramers, 
necessary for activation of certain genes and assembled by the N-terminal domains, when two STAT binding sites 
for dimers are close together (Henrikson et al, 2002; Yan et al, 1996). 
 
In mammalian systems, SOCS proteins negatively influence the JAK/STAT pathway. Activated STATs stimulate 
transcription of the SOCS genes and the resulting SOCS proteins bind phosphorylated JAK kinases and their 
receptors to turn off the pathway in a simple negative feedback loop. SOCS can affect their negative regulation in 
three ways. First, by binding phospho-Tyr on the receptors to physically block STAT recruitment. Second, by 
binding directly to JAKs or the receptors to specifically inhibit JAK kinase activity. Third, by interacting with 
elongin BC complex and Cullin 2, facilitating the ubiquitination of JAKs and, presumably, the receptors. 
Ubiquitination of these targets decreases their stability by targeting them for proteasomal degradation (Rawlings et 
al, 2004). 
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Three SOCS proteins have been identified in Drosophila: SOCS36E, SOCS44A, and SOCS16D. At the present time, 
there is no evidence to demonstrate a physical interaction between Drosophila SOCS proteins and another protein 
such as HOP or a receptor.
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Formation of the activated receptor complex ↗

Location: JAK/STAT pathway

Stable identifier: R-DME-209209

Spatzle (SPZ) dimer binding leads to Toll (TL) receptor homodimerisation and activation.
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Formation of the activated STAT92E dimer and transport to the nucleus ↗

Location: JAK/STAT pathway

Stable identifier: R-DME-209228

Spatzle (SPZ) dimer binding leads to Toll (TL) receptor homodimerisation and activation.
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Phosphorylated STAT92E dimer activates transcription ↗

Location: JAK/STAT pathway

Stable identifier: R-DME-209307

Type: transition

Compartments: nucleoplasm

Once in the nucleus, the phosphorylated STAT92E dimer binds to a palindromic DNA sequence in the promoters of 
the pathway target genes. This now enables transcription to be activated.
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Transcriptional repression by nuclear factors ↗

Location: JAK/STAT pathway

Stable identifier: R-DME-210671

Spatzle (SPZ) dimer binding leads to Toll (TL) receptor homodimerisation and activation.
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Dephosphorylation by PTP61F phosphatases ↗

Location: JAK/STAT pathway

Stable identifier: R-DME-210688

Spatzle (SPZ) dimer binding leads to Toll (TL) receptor homodimerisation and activation.
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